Dependence of Solidification for Bi2Te3−xSex Alloys on Their Liquid States

[1]  W. Jo,et al.  Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials , 2016 .

[2]  Xuyang Zhou,et al.  Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr) , 2016, Scientific Reports.

[3]  J. Cairney,et al.  Elemental distributions within multiphase quaternary Pb chalcogenide thermoelectric materials determined through three-dimensional atom probe tomography , 2016 .

[4]  G. J. Snyder,et al.  Dislocation strain as the mechanism of phonon scattering at grain boundaries , 2016 .

[5]  Chen Wu,et al.  Effect of liquid–liquid structure transition on solidification of Sn57Bi43 alloy , 2016 .

[6]  R. Schmechel,et al.  Anisotropic n-Type Bi2Te3–In2Te3 Thermoelectric Material Produced by Seeding Zone Melting and Solid State Transformation , 2016 .

[7]  Xiaoyan Wang,et al.  Influence of melt overheating treatment on solidification behavior of BiTe-based alloys at different cooling rates , 2015 .

[8]  W. D. Callister,et al.  Materials Science and Engineering: An Introduction -9/E. , 2015 .

[9]  Xiaoyan Wang,et al.  Enhancing the thermoelectric performance of free solidified p-type Bi0.5Sb1.5Te3 alloy by manipulating its parent liquid state , 2015 .

[10]  Tiejun Zhu,et al.  Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n‐Type Bismuth‐Telluride‐Based Solid Solutions , 2015 .

[11]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[12]  Fang-Qiu Zu,et al.  Temperature-Induced Liquid-Liquid Transition in Metallic Melts: A Brief Review on the New Physical Phenomenon , 2015 .

[13]  Xianli Su,et al.  Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials , 2015 .

[14]  C. Thanachayanont,et al.  Competing anisotropic microstructures of Bi2(Te0.95Se0.05)3 thermoelectric materials by Bridgman technique , 2015 .

[15]  Songlin Feng,et al.  One order of magnitude faster phase change at reduced power in Ti-Sb-Te , 2014, Nature Communications.

[16]  Han Li,et al.  High-Temperature Mechanical and Thermoelectric Properties of p-Type Bi0.5Sb1.5Te3 Commercial Zone Melting Ingots , 2014, Journal of Electronic Materials.

[17]  H. Goldsmid,et al.  Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation , 2014, Materials.

[18]  Guangqiang Li,et al.  Improved thermoelectric properties of Bi2Te3−xSex alloys by melt spinning and resistance pressing sintering , 2014 .

[19]  Dawei Liu,et al.  BiSbTe‐Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties , 2013 .

[20]  Bing Sun,et al.  Thermoelectric transport properties and crystal growth of BiSbTe3 bulk materials produced by a unique high-pressure synthesis , 2013 .

[21]  Xinbing Zhao,et al.  Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement , 2012 .

[22]  Jie Chen,et al.  A new viewpoint to the mechanism for the effects of melt overheating on solidification of Pb-Bi alloys , 2009 .

[23]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[24]  C. Benmore,et al.  Evidence for a temperature-driven structural transformation in liquid bismuth , 2009 .

[25]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[26]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[27]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[28]  G. Ding,et al.  Change in solidification behavior of Bi Sb10 alloy after liquid structural transition , 2008 .

[29]  F. Zu,et al.  Hump phenomenon on resistivity–temperature curve in liquid Bi, Sb and their alloys , 2007 .

[30]  D. Qiu,et al.  A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys , 2007 .

[31]  M. Herrera,et al.  Quantification of the microconstituents formed during solidification by the Newton thermal analysis method , 2006 .

[32]  Hajime Tanaka,et al.  Critical-Like Phenomena Associated with Liquid-Liquid Transition in a Molecular Liquid , 2004, Science.

[33]  Hua Yang,et al.  Observation of an anomalous discontinuous liquid-structure change with temperature. , 2002, Physical review letters.

[34]  B. Zhang,et al.  Post-melting anomaly of Pb-Bi alloys observed by internal friction technique , 2001 .

[35]  C. B. Vining,et al.  Semiconductors are cool , 2001, Nature.

[36]  L. D. Ivanova,et al.  Thermoelectric properties of Bi2Te3-Sb2Te3 single crystals in the range 100–700 K , 2000 .

[37]  Osamu Shimomura,et al.  A first-order liquid–liquid phase transition in phosphorus , 2000, Nature.

[38]  Paul McMillan,et al.  Phase transitions: Jumping between liquid states , 2000, Nature.

[39]  S. Mudry The structure of liquid Bi2Te3 alloys near the stoichiometric region , 1998 .

[40]  Paul F. McMillan,et al.  Polymorphic Phase Transitions in Liquids and Glasses , 1997, Science.

[41]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[42]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[43]  T. Fukunaga,et al.  Neutron diffraction study of liquid Bi-Se alloys , 1993 .

[44]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[45]  J. Hafner,et al.  Low-temperature electrical resistivity of amorphous Ca-Mg alloys , 1984 .

[46]  W. Tiller,et al.  Effect of Freezing Conditions on the Thermoelectric Properties of BiSbTe3 Crystals , 1961 .

[47]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[48]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[49]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .