Micro Process Technology, 2. Processing

The article contains sections titled: 1. Reaction Engineering Potential–Transport Intensification 2. Reaction Engineering Potential—Chemical Intensification (Novel Process Windows) 2.1. Chemical Applicability 2.2. Chemical Intensification through Harsh Conditions: Novel Process Windows 2.3. Chemical Intensification through Highly Reactive Intermediates: Flash Chemistry 3. Process-Design Intensification (Novel Process Windows) 4. Micromixers 4.1. Mixing Principles 4.2. Active and Passive Micromixers 4.3. Diffusion-Based Micromixers 4.3.1. Y- and T-Type Lamination Mixing 4.3.2. Hydrodynamic and Geometric Focusing for Lamellae Flows 4.3.3. Multilaminating Mixing 4.3.4. Cyclone Mixing 4.4. Split-and-Recombine Micromixers 4.4.1. Recycle-Flow Coanda-Effect Micromixer 4.4.2. Barrier-Embedded Micromixer 4.4.3. Caterpillar Micromixer 4.5. Chaotic Advection Micromixers 4.5.1. Herringbone Groove Micromixer 4.5.2. Bended Micromixer 4.6. Turbulent Micromixers—Jet Mixing 4.7. Design and Fabrication of Micromixers 4.7.1. Microfabrication 4.7.2. Modeling 4.7.3. Micromixer Design Development and Related New Microfluidic Principles 4.8. Mixing Characterization 4.8.1. Analytical Techniques 4.8.2. Hydrodynamics and Mixing 4.8.3. Residence Time Distribution 4.9. Applications of Micromixer Technologies 4.9.1. Polymerization 4.9.2. Organic and Bioorganic Reactions 4.9.3. Particle Generation 4.9.4. Droplet Generation, Encapsulation, and Polymer Particle Production 4.9.5. Scale-out and Fluid Distribution 5. Micro Heat Exchangers 5.1. Heat Exchange Fundamentals 5.2. Classification of Micro Heat Exchangers 5.2.1. Cross-Flow Heat Exchanger 5.2.2. Counterflow Heat Exchanger 5.2.3. Electrically Powered Heat Exchangers 5.2.4. Microwave Heat Exchanger 5.2.5. Heat-Pipe Heat Exchanger 5.3. Heat-Transfer Characterization and Enhancement 5.4. Fouling of Micro Heat Exchangers 5.5. Scale-out of Micro Heat Exchangers 6. Microevaporators 7. Flow Separation 7.1. State of the Art in Flow Separation 7.2. Micro Extractors 7.3. Micro Distillators/Rectificators 7.4. Micro Chromatography Devices 7.5. Micro Membrane Devices 7.6. Integrated Reaction–Separation Devices

[1]  Friedhelm Schönfeld,et al.  Simulation of Droplet Generation by Mixing Nozzles , 2003 .

[2]  Asterios Gavriilidis,et al.  Residence time distributions in microchannels: Comparison between channels with herringbone structures and a rectangular channel , 2010 .

[3]  S A Bowden,et al.  The liquid-liquid diffusive extraction of hydrocarbons from a North Sea oil using a microfluidic format. , 2006, Lab on a chip.

[4]  Kunio Arai,et al.  Continuous hydrothermal synthesis of Fe2O3, NiO, and CuO nanoparticles by superrapid heating using a T-type micro mixer at 673 K and 30 MPa , 2011 .

[5]  Holger Löwe,et al.  Heat Pipe-Mediated Control of Fast and Highly Exothermal Reactions , 2011 .

[6]  Yi-Kuen Lee,et al.  Efficient spatial-temporal chaotic mixing in microchannels , 2003 .

[7]  Robert Schlögl,et al.  A Novel Synthesis Route for Cu/ZnO/Al2O3 Catalysts used in Methanol Synthesis: Combining Continuous Consecutive Precipitation with Continuous Aging of the Precipitate , 2011 .

[8]  Jin-Woo Choi,et al.  A novel in-plane passive microfluidic mixer with modified Tesla structures. , 2004, Lab on a chip.

[9]  Jin-Woo Choi,et al.  A Novel In-Plane Passive Micromixer Using Coanda Effect , 2001 .

[10]  Youyuan Peng,et al.  Recent innovations in protein separation on microchips by electrophoretic methods , 2008, Electrophoresis.

[11]  V Hessel,et al.  An optimised split-and-recombine micro-mixer with uniform chaotic mixing. , 2004, Lab on a chip.

[12]  U. Schygulla,et al.  Concepts and realization of microstructure heat exchangers for enhanced heat transfer , 2006 .

[13]  King Lun Yeung,et al.  Experiments and modeling of membrane microreactors , 2005 .

[14]  Patrick Löb,et al.  Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers , 2011 .

[15]  Timothy Noël,et al.  Suzuki-Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. , 2011, Angewandte Chemie.

[16]  Phil Paik,et al.  Rapid droplet mixers for digital microfluidic systems. , 2003, Lab on a chip.

[17]  Elisabeth Verpoorte,et al.  An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application. , 2010, Analytical chemistry.

[18]  Laurent Falk,et al.  Performance comparison of micromixers , 2010 .

[19]  Norbert Schwesinger,et al.  A modular microfluid system with an integrated micromixer , 1996 .

[20]  T Kitamori,et al.  Integration of a microextraction system solvent extraction of a Co-2-nitroso-5-dimethylaminophenol complex on a microchip. , 2000, Journal of chromatography. A.

[21]  Christophe Marques,et al.  Fabrication and performance of a pin fin micro heat exchanger , 2004 .

[22]  M. Ward,et al.  Micro T-mixer as a rapid mixing micromixer , 2004 .

[23]  M.H.J.M. de Croon,et al.  Novel process windows – Concept, proposition and evaluation methodology, and intensified superheated processing , 2011 .

[24]  Kwang-Yong Kim,et al.  Mixing performance of unbalanced split and recombine micomixers with circular and rhombic sub-channels , 2010 .

[25]  Holger Löwe,et al.  Heat Pipe‐Cooled Microstructured Reactor Concept for Highly Exothermal Ionic Liquid Syntheses , 2010 .

[26]  Satish G. Kandlikar,et al.  Fundamental issues related to flow boiling in minichannels and microchannels , 2002 .

[27]  Xiaojun Quan,et al.  Recent Work on Boiling and Condensation in Microchannels , 2009 .

[28]  Yanbin Huang,et al.  Structure Evolution of Curcumin Nanoprecipitation from a Micromixer , 2010 .

[29]  Quan Yuan,et al.  Thermal Performance of Crossflow Microchannel Heat Exchangers , 2010 .

[30]  Gjergji Shore,et al.  Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). , 2010, Chemistry.

[31]  Sun-Tak Hwang,et al.  Zero‐gravity distillation utilizing the heat pipe principle (micro‐distillation) , 1985 .

[32]  Jc Jaap Schouten,et al.  Single-phase fluid flow distribution and heat transfer in microstructured reactors , 2011 .

[33]  Matthias Wessling,et al.  Porous ceramic mesoreactors: A new approach for gas–liquid contacting in multiphase microreaction technology , 2011 .

[34]  Kalman B. Migler,et al.  Forced assembly and mixing of melts via planar polymer micro-mixing , 2010 .

[35]  Alan Mathewson,et al.  Application of magnetohydrodynamic actuation to continuous flow chemistry. , 2002, Lab on a chip.

[36]  Huiying Wu,et al.  An experimental study of convective heat transfer in silicon microchannels with different surface conditions , 2003 .

[37]  Jonathan D. Moseley,et al.  A Commercial Continuous Flow Microwave Reactor Evaluated for Scale-Up , 2010 .

[38]  G.C.F. Venhorst,et al.  Fabrication of a micro cryogenic cold stage using MEMS-technology , 2006 .

[39]  Antonello Barresi,et al.  Investigation of the flow field in a three-dimensional Confined Impinging Jets Reactor by means of microPIV and DNS , 2011 .

[40]  Gjergji Shore,et al.  Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis (MACOS). , 2006, Angewandte Chemie.

[41]  V. Hessel,et al.  Micromixers—a review on passive and active mixing principles , 2005 .

[42]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[43]  Chin Pan,et al.  Simple Channel Geometry for Enhancement of Chemical Reactions in Microchannels , 2010 .

[44]  Kee Suk Ryu,et al.  A NOVEL MICROSTIRRER AND ARRAYS FOR MICROFLUIDIC MIXING , 2001 .

[45]  Ryan L Hartman,et al.  Microchemical systems for continuous-flow synthesis. , 2009, Lab on a chip.

[46]  K. Jensen,et al.  Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. , 2007, Angewandte Chemie.

[47]  Annegret Stark,et al.  Flow Chemistry of the Kolbe‐Schmitt Synthesis from Resorcinol: Process Intensification by Alternative Solvents, New Reagents and Advanced Reactor Engineering , 2009 .

[48]  Manfred Kraut,et al.  On the scalability of microstructured mixing devices , 2010 .

[49]  Yuchao Zhao,et al.  Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels , 2010 .

[50]  Joel Voldman,et al.  Liquid Mixing Studies with an Integrated Mixer/Valve , 1998 .

[51]  Volker Hessel,et al.  Recent changes in patenting behavior in microprocess technology and its possible use for gas-liquid reactions and the oxidation of glucose. , 2012, ChemSusChem.

[52]  Bernd Werner,et al.  Mischer mit mikrostrukturierten Folien für chemische Produktionsaufgaben , 2004 .

[53]  A. Vikhansky,et al.  Analysis of a pressure‐driven folding flow microreactor with nearly plug‐flow characteristics , 2009 .

[54]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[55]  Helmut Pennemann,et al.  Impact of fluid path geometry and operating parameters on l/l-dispersion in interdigital micromixers , 2006 .

[56]  Chien-Hsiung Tsai,et al.  Rapid micromixer via ferrofluids , 2010 .

[57]  Takehiko Kitamori,et al.  Countercurrent laminar microflow for highly efficient solvent extraction. , 2007, Angewandte Chemie.

[58]  Miko Elwenspoek,et al.  Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems , 1999 .

[59]  H.J.M. ter Brake,et al.  INTERFACING ISSUES IN MICROCOOLING OF OPTICAL DETECTORS IN SPACE APPLICATIONS , 2010 .

[60]  Y. Yoo,et al.  Membrane microreactor in biocatalytic transesterification of triolein for biodiesel production , 2010 .

[61]  J. Aubin,et al.  Current methods for characterising mixing and flow in microchannels , 2010 .

[62]  Z. P. Wang,et al.  A microfluidic mixer with self-excited 'turbulent' fluid motion for wide viscosity ratio applications. , 2010, Lab on a chip.

[63]  Gian Luca Morini,et al.  Low-Frequency Instabilities in the Operation of Metallic Multi-Microchannel Evaporators , 2007 .

[64]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[65]  Wouter Olthuis,et al.  Micro-evaporation electrolyte concentrator , 2003 .

[66]  Zengyuan Guo,et al.  Size effect on single-phase channel flow and heat transfer at microscale , 2003 .

[67]  Klaus Schubert,et al.  Characterisation of electrically powered micro-heat exchangers☆ , 2004 .

[68]  R. Austin,et al.  Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds , 1998 .

[69]  A. Manz,et al.  Microstructure for efficient continuous flow mixing , 1999 .

[70]  Klaus Schubert,et al.  High-speed imaging of flow in microchannel array water evaporators , 2005 .

[71]  Klaus Schubert,et al.  MlCROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING , 2023, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[72]  Gunther Kolb,et al.  Development Work on a Microstructured 50 kW Ethanol Fuel Processor for a Small-Scale Stationary Hydrogen Supply System , 2011 .

[73]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[74]  Holger Löwe,et al.  Development of Microstructured Reactors to Enable Organic Synthesis Rather than Subduing Chemistry , 2005 .

[75]  M. Paraschivoiu,et al.  Single-phase fluid flow and mixing in microchannels , 2011 .

[76]  Michel Cabassud,et al.  A new adaptive procedure for using chemical probes to characterize mixing , 2011 .

[77]  Klaus Rademann,et al.  Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. , 2010, ACS nano.

[78]  K. Jensen,et al.  Integrated continuous microfluidic liquid-liquid extraction. , 2007, Lab on a chip.

[79]  Yi Cheng,et al.  Integrating micromixer precipitation and electrospray drying toward continuous production of drug nanoparticles , 2011 .

[80]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[81]  Dongqing Li,et al.  Heat Transfer and Fluid Flow in Microchannels , 1996, Microelectromechanical Systems (MEMS).

[82]  Steffen Hardt,et al.  Helical Flows and Chaotic Mixing in Curved Micro Channels , 2004 .

[83]  Huiying Wu,et al.  Phase-Change Heat Transfer in Microsystems , 2007 .

[84]  Asterios Gavriilidis,et al.  Residence time distribution studies in microstructured plate reactors , 2011 .

[85]  Holger Löwe,et al.  Steering of Liquid Mixing Speed in Interdigital Micro Mixers – From Very Fast to Deliberately Slow Mixing , 2004 .

[86]  W. Ehrfeld,et al.  Microreactor with Integrated Static Mixer and Analysis System , 1995 .

[87]  Gian Luca Morini,et al.  Scaling Effects for Liquid Flows in Microchannels , 2006 .

[88]  Achim Wenka,et al.  Design parameter studies on cyclone type mixers , 2011 .

[89]  Ryan L Hartman,et al.  Multistep microchemical synthesis enabled by microfluidic distillation. , 2010, Angewandte Chemie.

[90]  Steven V. Ley,et al.  Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. , 2010, Organic letters.

[91]  Mahmood Yaghoubi,et al.  Influence of channel geometry on the performance of a counter flow microchannel heat exchanger , 2009 .

[92]  Robin H. Liu,et al.  Hybridization enhancement using cavitation microstreaming. , 2003, Analytical chemistry.

[93]  S. Buchwald,et al.  Continuous-flow synthesis of biaryls enabled by multistep solid-handling in a lithiation/borylation/Suzuki-Miyaura cross-coupling sequence. , 2011, Angewandte Chemie.

[94]  Dong-Pyo Kim,et al.  Continuous in situ generation, separation, and reaction of diazomethane in a dual-channel microreactor. , 2011, Angewandte Chemie.

[95]  Wolfgang Fritzsche,et al.  Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis , 2011 .

[96]  J. Josserand,et al.  Mixing processes in a zigzag microchannel: finite element simulations and optical study. , 2002, Analytical chemistry.

[97]  Asterios Gavriilidis,et al.  Mixing characteristics of T-type microfluidic mixers , 2001 .

[98]  V. Hessel,et al.  Laminar mixing in different interdigital micromixers: I. Experimental characterization , 2003 .

[99]  Volker Hessel,et al.  Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry , 2009 .

[100]  J. Thome Boiling in microchannels: a review of experiment and theory , 2004 .

[101]  Klavs F Jensen,et al.  Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence. , 2005, Lab on a chip.

[102]  Steven V. Ley,et al.  New tools and concepts for modern organic synthesis , 2002, Nature Reviews Drug Discovery.

[103]  Bernhard Lendl,et al.  Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin. , 2003, Lab on a chip.

[104]  Xin Fu,et al.  Numerical simulation on fluid mixing by effects of geometry in staggered oriented ridges micromixers , 2011 .

[105]  Jun-ichi Yoshida,et al.  Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. , 2010, Chemical record.

[106]  Sang-Hoon Lee,et al.  Applications of micromixing technology. , 2010, The Analyst.

[107]  Ibrahim Hassan,et al.  MICROCHANNEL HEAT SINKS: AN OVERVIEW OF THE STATE-OF-THE-ART , 2004 .

[108]  T. Johnson,et al.  Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow. , 2002, Lab on a chip.

[109]  Dieter Bothe,et al.  Computational Analysis of an Instantaneous Chemical Reaction in a T-Microreactor , 2010 .

[110]  Antonello Barresi,et al.  Turbulent precipitation in micromixers: CFD simulation and flow field validation , 2010 .

[111]  R.W.K. Allen,et al.  Experimental demonstration of rotating spiral microchannel distillation , 2010 .

[112]  Steven V Ley,et al.  A flow-based synthesis of imatinib: the API of Gleevec. , 2010, Chemical communications.

[113]  G. Croce,et al.  Numerical analysis of roughness effect on microtube heat transfer , 2004 .

[114]  V. Hessel,et al.  Analysis of flow patterns emerging during evaporation in parallel microchannels , 2007 .

[115]  Volker Hessel,et al.  Entwicklung einer leistungsstarken Mikrorektifikationsapparatur für analytische und präparative Anwendungen , 2011 .

[116]  Angela Jianu,et al.  Strategies against Particle Fouling in the Channels of a Micro Heat Exchanger When Performing μPIV Flow Pattern Measurements , 2007 .

[117]  J. van der Schaaf,et al.  Nitrogen stripping of isopropyl-alcohol and toluene in a falling film micro reactor : gas side mass transfer experiments and modeling at isothermal conditions , 2012 .

[118]  Kazuo Matsuyama,et al.  Design of micromixer for emulsification and application to conventional commercial plant for cosmetic , 2011 .

[119]  Igor Mezić,et al.  Uniform resonant chaotic mixing in fluid flows , 2003, Nature.

[120]  Pasqualina M. Sarro,et al.  MEMS silicon-based micro-evaporator , 2011 .

[121]  Adeniyi Lawal,et al.  Residence-time distribution as a measure of mixing in T-junction and multilaminated/elongational flow micromixers , 2010 .

[122]  Jun-ichi Yoshida,et al.  Generation and reactions of oxiranyllithiums by use of a flow microreactor system. , 2010, Chemistry.

[123]  Volker Hessel,et al.  3D Analysis of Heat Transfer Intensification by Re‐Entrance Flow Pin‐Fins Microstructures with a Highly Thermal‐Conductive Plate , 2011 .

[124]  S. Garimella,et al.  Investigation of heat transfer in rectangular microchannels , 2005 .

[125]  Jonathan P. McMullen,et al.  Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation , 2011 .

[126]  Yuan F Zheng,et al.  A Microdevice for the Mixing of a Highly Viscous Biosample with Water/Membrane Protein Solution using Microchannel and Centrifugation , 2011, Journal of laboratory automation.

[127]  Thomas Schwalbe,et al.  Novel Innovation Systems for a Cellular Approach to Continuous Process Chemistry from Discovery to Market , 2004 .

[128]  M. Tokeshi,et al.  Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride , 2000, Analytical chemistry.

[129]  Steffen Hardt,et al.  Simulation of helical flows in microchannels , 2004 .

[130]  Alberto Escarpa,et al.  CE microchips: An opened gate to food analysis , 2007, Electrophoresis.

[131]  Albert van den Berg Integrated Micro- and Nanofluidics: Silicon Revisited , 2001 .

[132]  Deborah V. Pence,et al.  The simplicity of fractal-like flow networks for effective heat and mass transport , 2010 .

[133]  Rüdiger Schütte,et al.  Microstructured Reactors for Heterogeneously Catalyzed Gas‐Phase Reactions on an Industrial Scale , 2005 .

[134]  Gerhart Eigenberger,et al.  A new reactor concept for endothermic high-temperature reactions , 1999 .

[135]  Jesús Simal-Gándara,et al.  The Place of Capillary Electrochromatography Among Separation Techniques—A Review , 2004 .

[136]  Kazuo Matsuyama,et al.  Optimization methodology of operation of orifice-shaped micromixer based on micro-jet concept , 2010 .

[137]  Igor Plazl,et al.  Steroid extraction in a microchannel system--mathematical modelling and experiments. , 2007, Lab on a chip.

[138]  Michael Finot,et al.  Capillary electrochromatography with packed bead beds in microfluidic devices , 2009, Electrophoresis.

[139]  John E. Bronlund,et al.  Nucleation of Alpha lactose monohydrate induced using flow through a venturi orifice , 2010 .

[140]  Nadine Aubry,et al.  Enhancement of microfluidic mixing using time pulsing. , 2003, Lab on a chip.

[141]  Isao Hasegawa,et al.  Development of a new micromixer based on split/recombination for mass production and its application to soap free emulsifier , 2004 .

[142]  Albert van den Berg,et al.  A Rapid Vortex Micromixer for Studying High-Speed Chemical Reactions , 2001 .

[143]  Michael W. Collins,et al.  Single-phase heat transfer in microchannels The importance of scaling effects , 2009 .

[144]  Dongqing Li,et al.  Modeling forced liquid convection in rectangular microchannels with electrokinetic effects , 1998 .

[145]  S. Chakraborty,et al.  Frictional and Heat Transfer Characteristics of Single-Phase Microchannel Liquid Flows , 2012 .

[146]  Volker Hessel,et al.  Liquid–Liquid Flow in a Capillary Microreactor: Hydrodynamic Flow Patterns and Extraction Performance , 2012 .

[147]  Steffen Hardt,et al.  Laminar mixing in different interdigital micromixers: II. Numerical simulations , 2003 .

[148]  J. C. Schouten,et al.  Cost Analysis for a Continuously Operated Fine Chemicals Production Plant at 10 Kg/Day Using a Combination of Microprocessing and Microwave Heating , 2011 .

[149]  Christophe A. Serra,et al.  Micromixer-assisted polymerization processes , 2011 .

[150]  Masayuki Nakao,et al.  Slurry mixing device with microchannels for gelcasting , 2011 .

[151]  Adrian Lange,et al.  Patterns of thermomagnetic convection in magnetic fluids subjected to spatially modulated magnetic fields. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  Kevin D. Nagy,et al.  Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[153]  Albert Renken,et al.  Mixing efficiency and energy consumption for five generic microchannel designs , 2011 .

[154]  L. Snyder,et al.  HPLC: past and present. , 2000, Analytical chemistry.

[155]  Mayuresh V. Kothare,et al.  Towards a palladium micro-membrane for the water gas shift reaction: microfabrication approach and hydrogen purification results , 2003 .

[156]  Zhao-Lun Fang,et al.  A microfluidic chip based liquid-liquid extraction system with microporous membrane. , 2006, Analytica chimica acta.

[157]  Shizhi Qian,et al.  A chaotic electroosmotic stirrer. , 2002, Analytical chemistry.

[158]  Dong Sung Kim,et al.  A barrier embedded chaotic micromixer , 2004 .

[159]  Keizo Nakagawa,et al.  Indentations and baffles for improving mixing rate in deep microchannel reactors , 2011 .

[160]  C. Culbertson,et al.  Microchip devices for high-efficiency separations. , 2000, Analytical chemistry.

[161]  Thomas Henkel,et al.  Characterization of viscosity dependent residence time distribution in the static micromixer Statmix6 , 2010 .

[162]  Quan Yuan,et al.  Ideal micromixing performance in packed microchannels , 2011 .

[163]  Daniel Tondeur,et al.  Channel interlacing: A geometric concept for intensification and design of the internal structure of fluid contactors , 2011 .

[164]  Cemal Niyazi Sökmen,et al.  Effect of property variations on the mixing of laminar supercritical water streams in a T-junction , 2011 .

[165]  Dong-Woo Cho,et al.  A barrier embedded Kenics micromixer , 2004 .

[166]  Gang Qian,et al.  Gas–liquid mixing in a multi-scale micromixer with arborescence structure , 2011 .

[167]  Steven V Ley,et al.  The oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using Teflon AF-2400 to effect gas/liquid contact. , 2012, ChemSusChem.

[168]  Abdul Latif Ahmad,et al.  New spectrophotometric measurement method for process control of miniaturized intensified systems , 2010 .

[169]  Wanjun Wang,et al.  A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets , 2004 .

[170]  Ryan L Hartman,et al.  Distillation in microchemical systems using capillary forces and segmented flow. , 2009, Lab on a chip.

[171]  Steven J. Broadwater,et al.  The continuous-flow synthesis of Ibuprofen. , 2009, Angewandte Chemie.

[172]  Lung-Ming Fu,et al.  Distillation and detection of SO2 using a microfluidic chip. , 2012, Lab on a chip.

[173]  G. Bruin,et al.  Recent developments in electrokinetically driven analysis on microfabricated devices , 2000, Electrophoresis.

[174]  Hideto Matsuyama,et al.  Microfluidic Extraction of Docosahexaenoic Acid Ethyl Ester: Comparison between Slug Flow and Emulsion , 2011 .

[175]  S. Ley,et al.  A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. , 2006, Chemical communications.

[176]  H. Martin,et al.  Gas to gas heat transfer in micro heat exchangers , 1993 .

[177]  T Kitamori,et al.  Integration of a wet analysis system on a glass chip: determination of Co(ii) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. , 2001, Lab on a chip.

[178]  Andreas Kirschning,et al.  Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors. , 2008, Angewandte Chemie.

[179]  Michael J. Vellekoop,et al.  Characterization of a vertical lamination micromixer for IR spectroscopy , 2010 .

[180]  J. C. Cal,et al.  Feasibility of Tubular Microreactors for Emulsion Polymerization , 2011 .

[181]  Steven V Ley,et al.  The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. , 2011, Angewandte Chemie.

[182]  Dominique M. Roberge,et al.  Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? , 2005 .

[183]  Tianhong Cui,et al.  Fabrication of microreactors for dehydrogenation of cyclohexane to benzene , 2000 .

[184]  Amir Fartaj,et al.  A review on microchannel heat exchangers and potential applications , 2011 .

[185]  Huizhuo Shi,et al.  Design and fabrication of an affordable polymer micromixer for medical and biomedical applications , 2010 .

[186]  Volker Hessel,et al.  From a Review of Noble Metal versus Enzyme Catalysts for Glucose Oxidation Under Conventional Conditions Towards a Process Design Analysis for Continuous-flow Operation , 2011, Journal of Flow Chemistry.

[187]  Timothy Noël,et al.  A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions. , 2011, Lab on a chip.

[188]  Volker Hessel,et al.  Flüssig/Flüssig‐Dispergierung im Interdigital‐Mikromischer , 2004 .

[189]  Anna Lee Tonkovich,et al.  Microstructures on Macroscale: Microchannel Reactors for Mediumand Large‐Size Processes , 2010 .

[190]  Annegret Stark,et al.  Intensification of the Capillary-Based Kolbe−Schmitt Synthesis from Resorcinol by Reactive Ionic Liquids, Microwave Heating, or a Combination Thereof , 2009 .

[191]  Andrzej Górak,et al.  Mikrodestillation von Mehrkomponentensystemen , 1996 .

[192]  Klaus Schubert,et al.  Microstructure Heat Exchanger Applications in Laboratory and Industry , 2007 .

[193]  Tobias Baier,et al.  Hermetic Gas‐tight Ceramic Microreactors , 2005 .

[194]  Ravi Arora,et al.  Microchannel Technology Scale-up to Commercial Capacity , 2005 .

[195]  Jan H. J. Fluitman,et al.  Micromechanical components for µTAS , 1995 .

[196]  Christophe A. Serra,et al.  Handling of Polymer Particles in Microchannels , 2010 .