Metallic Contact between MoS2 and Ni via Au Nanoglue.

A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS2 complexes. The intrinsic semiconducting property of MoS2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability.

[1]  Faheem Khan,et al.  Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers , 2018, Nature Nanotechnology.

[2]  H. Joe,et al.  Contact Effect of ReS2/Metal Interface. , 2017, ACS applied materials & interfaces.

[3]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[4]  M. Huttula,et al.  Orienting spins in dually doped monolayer MoS2: from one-sided to double-sided doping. , 2017, Chemical communications.

[5]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[6]  W. Que,et al.  Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction , 2016 .

[7]  W. Cao,et al.  One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method , 2016 .

[8]  Hongyu Zhang,et al.  Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1–4) cluster toppings and fillings: A first-principles investigation , 2016, Scientific Reports.

[9]  A. Kis,et al.  Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS2 , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[11]  Hua Zhang,et al.  Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte , 2015, Science Advances.

[12]  M. Huttula,et al.  Gold nanoparticles on MoS2 layered crystal flakes , 2015 .

[13]  M. Pumera,et al.  Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties. , 2015, Chemistry.

[14]  Isaac M. Markus,et al.  Influence of synthesis conditions on the surface passivation and electrochemical behavior of layered cathode materials , 2014 .

[15]  Jiantong Li,et al.  Inkjet Printing of MoS2 , 2014 .

[16]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[17]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[18]  K. Khoo,et al.  Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. , 2014, ACS nano.

[19]  S. Lodha,et al.  Schottky barrier heights for Au and Pd contacts to MoS2 , 2014 .

[20]  M. Menon,et al.  Tunable magnetic properties of transition metal doped MoS 2 , 2014 .

[21]  M. Huttula,et al.  X-RAY PHOTOEMISSION ELECTRON MICROSCOPE DETERMINATION OF ORIGINS OF ROOM TEMPERATURE FERROMAGNETISM AND PHOTOLUMINESCENCE IN HIGH Co-CONTENT CoxZn1-xO FILMS , 2014 .

[22]  Qing Zhang,et al.  Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.

[23]  Richard C. Willson,et al.  Tuning the Magnetic Properties of Nanoparticles , 2013, International journal of molecular sciences.

[24]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[25]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[26]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[27]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[28]  James J. Mudd,et al.  Growth and characterisation of NiSb(0001)/GaAs(111)B epitaxial films , 2012 .

[29]  M. Knupfer,et al.  Transition metal phthalocyanines: insight into the electronic structure from soft x-ray spectroscopy. , 2012, The Journal of chemical physics.

[30]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[31]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[32]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[33]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[34]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[35]  N. Gibson,et al.  The Scherrer equation versus the 'Debye-Scherrer equation'. , 2011, Nature nanotechnology.

[36]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[37]  Jan G. Korvink,et al.  Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials , 2010 .

[38]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[39]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[40]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[41]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  Q. Le,et al.  Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy. , 2001, Journal of Nanoscience and Nanotechnology.

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  Jess P. Wilcoxon,et al.  Photooxidation of Organic Chemicals Catalyzed by Nanoscale MoS2 , 1999 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.