Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  Chuanxiang Tang,et al.  Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches , 2017 .

[3]  M. Ferrario,et al.  Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions , 2016, Scientific Reports.

[4]  R. X. Li,et al.  High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control. , 2016, Physical review letters.

[5]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[6]  Zulfikar Najmudin,et al.  Laser wakefield accelerator based light sources: potential applications and requirements , 2014 .

[7]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[8]  Tae Jun Yu,et al.  Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. , 2013, Physical review letters.

[9]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[10]  Q. Xing,et al.  Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser. , 2011, Applied optics.

[11]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[12]  D. Erni,et al.  Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer. , 2010, The Review of scientific instruments.

[13]  D Neely,et al.  Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry. , 2010, Physical review letters.

[14]  P. Musumeci,et al.  Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction , 2010 .

[15]  Xijie Wang,et al.  Electron bunch length monitors using spatially encoded electro-optical technique in an orthogonal configuration , 2009 .

[16]  S. V. Bulanov,et al.  Enhancement of photon number reflected by the relativistic flying mirror. , 2009, Physical review letters.

[17]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[18]  W. A. Gillespie,et al.  Electro-optic time profile monitors for femtosecond electron bunches at the soft x-ray free-electron laser FLASH , 2009 .

[19]  Sara Casalbuoni,et al.  Numerical studies on the electro-optic detection of femtosecond electron bunches , 2008 .

[20]  Kazuhisa Nakajima,et al.  Towards a table-top free-electron laser , 2008 .

[21]  B Schmidt,et al.  Benchmarking of electro-optic monitors for femtosecond electron bunches. , 2007, Physical review letters.

[22]  Dong Eon Kim,et al.  Demonstration of the ultrafast nature of laser produced betatron radiation , 2007 .

[23]  G. Gallot,et al.  Ultrashort laser pulses and ultrashort electron bunches generated in relativistic laser-plasma interaction , 2006 .

[24]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[25]  W. Mori,et al.  Nonlinear theory for relativistic plasma wakefields in the blowout regime. , 2006, Physical review letters.

[26]  C. Geddes,et al.  Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. , 2005, Physical review letters.

[27]  T. N. Hansen,et al.  Clocking femtosecond X rays. , 2005, Physical review letters.

[28]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[29]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[30]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.

[31]  A M MacLeod,et al.  Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles. , 2004, Physical review letters.

[32]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[33]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[34]  A M MacLeod,et al.  Single-shot electron-beam bunch length measurements. , 2002, Physical review letters.

[35]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[36]  Seidel,et al.  Subpicosecond electro-optic measurement of relativistic electron pulses , 2000, Physical review letters.

[37]  M Bonn,et al.  Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling. , 2000, Optics letters.

[38]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[39]  S. P. Jamisona,et al.  Electro-optic techniques for temporal profile characterisation of relativistic Coulomb fields and coherent synchrotron radiation , 2006 .