iMOPSE: a library for bicriteria optimization in Multi-Skill Resource-Constrained Project Scheduling Problem

This paper presents a software library as a research and educational tool for Multi-Skill Resource-Constrained Scheduling Problem. The following useful tools have been implemented in Java: instance Generator, solution validator, solution visualizer and example solvers: Greedy algorithm and Genetic Algorithm. All tools are supported by iMOPSE dataset which consists of 36 instances and additional ’small’ 6 instances for educational purpose. In the paper, three test studies are described: (1) educational use of 6 ’small’ instances, (2) optimization of cost or duration of a schedule, and (3) simple bicritieria optimization of cost/duration of a final schedule. All described tools/examples are freely published on iMOPSE homepage.

[1]  Pawel B. Myszkowski,et al.  Tabu search approach for Multi-Skill Resource-Constrained Project Scheduling Problem , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[2]  Pawel B. Myszkowski,et al.  Novel heuristic solutions for Multi-Skill Resource-Constrained Project Scheduling Problem , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[3]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[4]  Hong Zhang,et al.  Particle swarm optimization for resource-constrained project scheduling , 2006 .

[5]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[6]  Sriyankar Acharyya,et al.  Simulated annealing variants for solving resource Constrained Project Scheduling Problem: A comparative study , 2011, 14th International Conference on Computer and Information Technology (ICCIT 2011).

[7]  Pawel B. Myszkowski,et al.  Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem , 2014, Soft Computing.

[8]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[9]  Pawel B. Myszkowski,et al.  GRASP Applied to Multi-Skill Resource-Constrained Project Scheduling Problem , 2016, ICCCI.

[10]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[11]  Pawel B. Myszkowski,et al.  A new benchmark dataset for Multi-Skill Resource-Constrained Project Scheduling Problem , 2015, 2015 Federated Conference on Computer Science and Information Systems (FedCSIS).

[12]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[13]  Reza Akbari,et al.  On the performance of bee algorithms for resource-constrained project scheduling problem , 2011, Appl. Soft Comput..

[14]  Pawel B. Myszkowski,et al.  Efficient selection operators in NSGA-II for solving bi-objective multi-skill resource-constrained project scheduling problem , 2017, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS).

[15]  Nestor Raúl,et al.  Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria , 2020 .

[16]  Francisco Luna,et al.  The software project scheduling problem: A scalability analysis of multi-objective metaheuristics , 2014, Appl. Soft Comput..

[17]  Pawel B. Myszkowski,et al.  Co-evolutionary algorithm solving multi-skill resource-constrained project scheduling problem , 2017, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS).

[18]  Ling Wang,et al.  Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem , 2017, Soft Comput..

[19]  Ling Wang,et al.  A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem , 2018, Swarm Evol. Comput..

[20]  Pawel B. Myszkowski,et al.  Hybrid Differential Evolution and Greedy Algorithm (DEGR) for solving Multi-Skill Resource-Constrained Project Scheduling Problem , 2018, Appl. Soft Comput..

[21]  Analía Amandi,et al.  Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem , 2013, Expert Syst. Appl..