Quantum correlations are tightly bound by the exclusivity principle.

It is a fundamental problem in physics of what principle limits the correlations as predicted by our current description of nature, based on quantum mechanics. One possible explanation is the "global exclusivity" principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show that this principle actually has a much stronger restriction on the probability distribution. We provide a tight constraint inequality imposed by this principle and prove that this principle singles out quantum correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might be one of the fundamental principles of nature.

[1]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[2]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[3]  C. Ross Found , 1869, The Dental register.

[4]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  A. Cabello Quantum physics: Correlations without parts , 2011, Nature.

[6]  M. A. Can,et al.  Simple test for hidden variables in spin-1 systems. , 2007, Physical review letters.

[7]  N. Gisin,et al.  Guess your neighbor's input: a multipartite nonlocal game with no quantum advantage. , 2010, Physical review letters.

[8]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[9]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[10]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[11]  O. Guhne,et al.  Mermin inequalities for perfect correlations , 2007, 0708.3208.

[12]  E. Specker DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN , 1960 .

[13]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[14]  A. Zeilinger,et al.  Experimental non-classicality of an indivisible quantum system , 2011, Nature.

[15]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[16]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[17]  A. Cabello Simple explanation of the quantum violation of a fundamental inequality. , 2012, Physical review letters.

[18]  Lars Erik Würflinger,et al.  Quantum correlations require multipartite information principles. , 2011, Physical review letters.

[19]  R. Spekkens,et al.  Preparation contextuality powers parity-oblivious multiplexing. , 2008, Physical review letters.

[20]  P. Badziag,et al.  Universality of state-independent violation of correlation inequalities for noncontextual theories. , 2008, Physical review letters.

[21]  Stephanie Wehner,et al.  An information-theoretic principle implies that any discrete physical theory is classical , 2013, Nature Communications.

[22]  Giuseppe Vallone,et al.  Fully nonlocal quantum correlations , 2011, 1105.3598.

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  Hector Zenil,et al.  A Computable Universe , 2012 .

[25]  G. Tóth,et al.  Bell inequalities for graph states. , 2004, Physical review letters.

[26]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[27]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[28]  A Cabello "All versus nothing" inseparability for two observers. , 2001, Physical review letters.

[29]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[30]  G. Boole XV. On the Theory of probabilities , Proceedings of the Royal Society of London.

[31]  S. Filipp,et al.  Proposed experiment for testing quantum contextuality with neutrons. , 2008, Physical review letters.