Adaptive Sampling for Fast Constrained Maximization of Submodular Function

Several large-scale machine learning tasks, such as data summarization, can be approached by maximizing functions that satisfy submodularity. These optimization problems often involve complex side constraints, imposed by the underlying application. In this paper, we develop an algorithm with poly-logarithmic adaptivity for non-monotone submodular maximization under general side constraints. The adaptive complexity of a problem is the minimal number of sequential rounds required to achieve the objective. Our algorithm is suitable to maximize a nonmonotone submodular function under a psystem side constraint, and it achieves a (p+O (√ p ) )-approximation for this problem, after only poly-logarithmic adaptive rounds and polynomial queries to the valuation oracle function. Furthermore, our algorithm achieves a (p + O (1))-approximation when the given side constraint is a p-extendible system. This algorithm yields an exponential speedup, with respect to the adaptivity, over any other known constant-factor approximation algorithm for this problem. It also competes with previous known results in terms of the query complexity. We perform various experiments on various real-world applications. We find that, in comparison with commonly used heuristics, our algorithm performs better on these instances. Proceedings of the 24 International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, San Diego, California, USA. PMLR: Volume 130. Copyright 2021 by the author(s).

[1]  Paul Liu,et al.  A polynomial lower bound on adaptive complexity of submodular maximization , 2020, STOC.

[2]  Amin Karbasi,et al.  Do Less, Get More: Streaming Submodular Maximization with Subsampling , 2018, NeurIPS.

[3]  Eric Balkanski,et al.  Non-monotone Submodular Maximization in Exponentially Fewer Iterations , 2018, NeurIPS.

[4]  Kent Quanrud,et al.  Parallelizing greedy for submodular set function maximization in matroids and beyond , 2018, STOC.

[5]  Eric Balkanski,et al.  The adaptive complexity of maximizing a submodular function , 2018, STOC.

[6]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[7]  Amin Karbasi,et al.  Greed Is Good: Near-Optimal Submodular Maximization via Greedy Optimization , 2017, COLT.

[8]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[9]  Huy L. Nguyen,et al.  Submodular Maximization with Nearly-optimal Approximation and Adaptivity in Nearly-linear Time , 2018, SODA.

[10]  Eric Balkanski,et al.  An optimal approximation for submodular maximization under a matroid constraint in the adaptive complexity model , 2018, STOC.

[11]  Amin Karbasi,et al.  Simultaneous Greedys: A Swiss Army Knife for Constrained Submodular Maximization , 2020, ArXiv.

[12]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[13]  Eric Balkanski,et al.  Learning to Optimize Combinatorial Functions , 2018, ICML.

[14]  Kent Quanrud,et al.  Streaming Algorithms for Submodular Function Maximization , 2015, ICALP.

[15]  Andreas Krause,et al.  Distributed Submodular Maximization: Identifying Representative Elements in Massive Data , 2013, NIPS.

[16]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[17]  Frank Neumann,et al.  Greedy Maximization of Functions with Bounded Curvature under Partition Matroid Constraints , 2018, AAAI.

[18]  Ben Taskar,et al.  MODEC: Multimodal Decomposable Models for Human Pose Estimation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Chandra Chekuri,et al.  A recursive greedy algorithm for walks in directed graphs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[20]  Andreas Krause,et al.  Streaming Non-monotone Submodular Maximization: Personalized Video Summarization on the Fly , 2017, AAAI.

[21]  Abhimanyu Das,et al.  Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection , 2018, J. Mach. Learn. Res..

[22]  Baharan Mirzasoleiman,et al.  Fast Constrained Submodular Maximization: Personalized Data Summarization , 2016, ICML.

[23]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[24]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[25]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.

[26]  Eric Balkanski,et al.  Approximation Guarantees for Adaptive Sampling , 2018, ICML.

[27]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[28]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[29]  Eric Balkanski,et al.  The limitations of optimization from samples , 2015, STOC.

[30]  Eli Upfal,et al.  The Complexity of Parallel Search , 1988, J. Comput. Syst. Sci..

[31]  Sergei Vassilvitskii,et al.  Fast greedy algorithms in mapreduce and streaming , 2013, SPAA.

[32]  Amin Karbasi,et al.  Unconstrained submodular maximization with constant adaptive complexity , 2019, STOC.

[33]  H. Wynn,et al.  Maximum entropy sampling and optimal Bayesian experimental design , 2000 .

[34]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[35]  Huy L. Nguyen,et al.  Submodular maximization with matroid and packing constraints in parallel , 2018, STOC.

[36]  G. Seber,et al.  Adaptive Cluster Sampling , 2012 .

[37]  Morteza Zadimoghaddam,et al.  Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity , 2018, ICML.

[38]  Kristen Grauman,et al.  Diverse Sequential Subset Selection for Supervised Video Summarization , 2014, NIPS.

[39]  Joseph Naor,et al.  Nonmonotone Submodular Maximization via a Structural Continuous Greedy Algorithm - (Extended Abstract) , 2011, ICALP.

[40]  Morteza Zadimoghaddam,et al.  Submodular Maximization with Nearly Optimal Approximation, Adaptivity and Query Complexity , 2018, SODA.

[41]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[42]  Amit Chakrabarti,et al.  Submodular maximization meets streaming: matchings, matroids, and more , 2013, Math. Program..

[43]  Michael W. Mahoney,et al.  Bayesian experimental design using regularized determinantal point processes , 2019, AISTATS.

[44]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[45]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[46]  Andreas Krause,et al.  Streaming submodular maximization: massive data summarization on the fly , 2014, KDD.

[47]  Ben Taskar,et al.  k-DPPs: Fixed-Size Determinantal Point Processes , 2011, ICML.

[48]  Maria-Florina Balcan,et al.  Learning submodular functions , 2010, ECML/PKDD.

[49]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[50]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[51]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[52]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.