On the Convergence Behavior of Partitioned-Block Frequency-Domain Adaptive Filters
暂无分享,去创建一个
Partitioned-block frequency-domain adaptive filter (PBFDAF) algorithms have become very popular, in particular, for acoustic signal processing. However, the stochastic behavior of PBFDAFs has not been extensively examined. This paper presents a comprehensive statistical analysis for a family of the overlap-save PBFDAF algorithms with 50% overlap, including the transient and steady-state performance. The frequency-domain equations of the PBFDAFs are transformed into the time-domain counterparts, which allows us to carry out the analysis completely in the time domain. By means of the independence assumption and vectorization operation, theoretical models for the mean and mean-square behavior of the PBFDAF algorithms are established without restricting the distribution of the inputs to being Gaussian. Specifically, the mean weight behavior and corresponding steady-state solution are provided. Closed-form expressions for the mean-square deviation (MSD) and mean-square error (MSE) are derived. The upper bound on the step size for the mean and mean-square stability of the PBFDAFs is specified. The theoretical model presents new insights into the convergence properties of the PBFDAFs with a sufficient number of coefficients. It was revealed that both the constrained and unconstrained PBFDAFs converge to the Wiener solution. However, the mean weight vector of the unconstrained PBFDAF algorithms cannot converge to the true solution for any inputs, while that of the constrained version can. The presented theory explains why the steady-state MSD of the unconstrained PBFDAF algorithm is larger than that of the constrained version but their minimum MSE is the same. Monte Carlo simulations provide very good support for our theory.