A family of immersed finite element spaces and applications to three dimensional $\mathbf{H}(\text{curl})$ interface problems

. Maxwell interface problems are of great importance in many electromagnetic applications. Unfitted mesh methods are especially attractive in 3D computation as they can circumvent generating complex 3D interface-fitted meshes. However, many unfitted mesh methods rely on non-conforming approximation spaces, which may cause a loss of accuracy for solving Maxwell equations, and the widely-used penalty techniques in the literature may not help in recovering the optimal convergence. In this article, we provide a remedy by developing N´ed´elec-type immersed finite element spaces with a Petrov-Galerkin scheme that is able to produce optimal-convergent solutions. To establish a systematic framework, we analyze all the H 1 , H (curl) and H (div) IFE spaces and form a discrete de Rham complex. Based on these fundamental results, we further develop a fast solver using a modified Hiptmair-Xu preconditioner which works for both the GMRES and CG methods.

[1]  Jun Hu,et al.  An Optimal Multigrid Algorithm for the Combining P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1$$\end{document} , 2021, Journal of Scientific Computing.

[2]  Long Chen,et al.  A Virtual Finite Element Method for Two Dimensional Maxwell Interface Problems with a Background Unfitted Mesh , 2021, Mathematical Models and Methods in Applied Sciences.

[3]  G. Manzini,et al.  Virtual elements for Maxwell's equations , 2021, Comput. Math. Appl..

[4]  L. Mascotto,et al.  Interpolation and stability properties of low order face and edge virtual element spaces , 2020, ArXiv.

[5]  Jun Zou,et al.  Solving Two Dimensional H(curl)-elliptic Interface Systems with Optimal Convergence On Unfitted Meshes , 2020, European Journal of Applied Mathematics.

[6]  Weiying Zheng,et al.  Interface-penalty finite element methods for interface problems in H1, H(curl), and H(div) , 2020 .

[7]  Ruchi Guo,et al.  Error Analysis of Symmetric Linear/Bilinear Partially Penalized Immersed Finite Element Methods for Helmholtz Interface Problems , 2020, J. Comput. Appl. Math..

[8]  M. Kaltenbacher,et al.  Non-Conforming Nitsche Interfaces for Edge Elements in Curl–Curl-Type Problems , 2020, IEEE Transactions on Magnetics.

[9]  Ruchi Guo,et al.  Solving Parabolic Moving Interface Problems with Dynamical Immersed Spaces on Unfitted Meshes: Fully Discrete Analysis , 2020, SIAM J. Numer. Anal..

[10]  Jun Zou,et al.  Mathematical and numerical study of a three-dimensional inverse eddy current problem , 2019, SIAM J. Appl. Math..

[11]  Ruchi Guo,et al.  An immersed finite element method for elliptic interface problems in three dimensions , 2019, J. Comput. Phys..

[12]  Long Chen,et al.  Anisotropic Error Estimates of the Linear Virtual Element Method on Polygonal Meshes , 2018, SIAM J. Numer. Anal..

[13]  Long Chen,et al.  An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..

[14]  R. Hiptmair,et al.  An a priori error estimate for interior penalty discretizations of the Curl-Curl operator on non-conforming meshes , 2016 .

[15]  Fei Wang,et al.  High-order extended finite element methods for solving interface problems , 2016, Computer Methods in Applied Mechanics and Engineering.

[16]  Marcus Sarkis,et al.  Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems , 2016, 1602.00603.

[17]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[18]  Z. Cai,et al.  A recovery-based a posteriori error estimator for H(curl) interface problems , 2015, 1504.00898.

[19]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[20]  Tsuyoshi Nomura,et al.  Multiphysics Simulation: Electromechanical System Applications and Optimization , 2014 .

[21]  Peng Song,et al.  A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..

[22]  Zhiming Chen,et al.  Detection and classification from electromagnetic induction data , 2013, J. Comput. Phys..

[23]  Ralf Hiptmair,et al.  Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.

[24]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[25]  Ralf Hiptmair,et al.  Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.

[26]  Ralf Hiptmair,et al.  STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS , 2011 .

[27]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[28]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[29]  Zhiming Chen,et al.  The adaptive immersed interface finite element method for elliptic and Maxwell interface problems , 2009, J. Comput. Phys..

[30]  Jun Zou,et al.  A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations , 2008, Math. Comput..

[31]  Susanne C. Brenner,et al.  A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem , 2008, Numerische Mathematik.

[32]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[33]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[34]  Peter Monk,et al.  The inverse source problem for Maxwell's equations , 2006 .

[35]  R. Kafafy,et al.  Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .

[36]  Annalisa Buffa,et al.  Algebraic convergence for anisotropic edge elements in polyhedral domains , 2005, Numerische Mathematik.

[37]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[38]  Shan Zhao,et al.  High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .

[39]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[40]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[41]  F. BEN BELGACEM,et al.  The Mortar Finite Element Method for 3D Maxwell Equations: First Results , 2001, SIAM J. Numer. Anal..

[42]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[43]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[44]  Herbert Edelsbrunner,et al.  Triangulations and meshes in computational geometry , 2000, Acta Numerica.

[45]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[46]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[47]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[48]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[49]  A. A. Arkadan,et al.  Dynamic stress in magnetic actuator computed by coupled structural and electromagnetic finite elements , 1996 .

[50]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[51]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[52]  K. Bathe,et al.  The inf-sup test , 1993 .

[53]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[54]  A. A. Shah,et al.  An iterative solution method for solving sparse nonsymmetiric linear systems , 1986 .

[55]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[56]  Long Chen,et al.  Immersed Virtual Element Methods for Maxwell Interface Problems in Three Dimensions , 2022, ArXiv.

[57]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[58]  R. Hiptmair,et al.  DG Treatment of Non-conforming Interfaces in 3D Curl-Curl Problems , 2016 .

[59]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[60]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[61]  Weiying Zheng,et al.  An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..

[62]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[63]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[64]  Serge Nicaise,et al.  Corner Singularities of Maxwell Interface and Eddy Current Problems , 2004 .

[65]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[66]  Gang Bao,et al.  An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography , 2002, SIAM J. Appl. Math..

[67]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[68]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[69]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .