A family of immersed finite element spaces and applications to three dimensional $\mathbf{H}(\text{curl})$ interface problems
暂无分享,去创建一个
[1] Jun Hu,et al. An Optimal Multigrid Algorithm for the Combining P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1$$\end{document} , 2021, Journal of Scientific Computing.
[2] Long Chen,et al. A Virtual Finite Element Method for Two Dimensional Maxwell Interface Problems with a Background Unfitted Mesh , 2021, Mathematical Models and Methods in Applied Sciences.
[3] G. Manzini,et al. Virtual elements for Maxwell's equations , 2021, Comput. Math. Appl..
[4] L. Mascotto,et al. Interpolation and stability properties of low order face and edge virtual element spaces , 2020, ArXiv.
[5] Jun Zou,et al. Solving Two Dimensional H(curl)-elliptic Interface Systems with Optimal Convergence On Unfitted Meshes , 2020, European Journal of Applied Mathematics.
[6] Weiying Zheng,et al. Interface-penalty finite element methods for interface problems in H1, H(curl), and H(div) , 2020 .
[7] Ruchi Guo,et al. Error Analysis of Symmetric Linear/Bilinear Partially Penalized Immersed Finite Element Methods for Helmholtz Interface Problems , 2020, J. Comput. Appl. Math..
[8] M. Kaltenbacher,et al. Non-Conforming Nitsche Interfaces for Edge Elements in Curl–Curl-Type Problems , 2020, IEEE Transactions on Magnetics.
[9] Ruchi Guo,et al. Solving Parabolic Moving Interface Problems with Dynamical Immersed Spaces on Unfitted Meshes: Fully Discrete Analysis , 2020, SIAM J. Numer. Anal..
[10] Jun Zou,et al. Mathematical and numerical study of a three-dimensional inverse eddy current problem , 2019, SIAM J. Appl. Math..
[11] Ruchi Guo,et al. An immersed finite element method for elliptic interface problems in three dimensions , 2019, J. Comput. Phys..
[12] Long Chen,et al. Anisotropic Error Estimates of the Linear Virtual Element Method on Polygonal Meshes , 2018, SIAM J. Numer. Anal..
[13] Long Chen,et al. An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..
[14] R. Hiptmair,et al. An a priori error estimate for interior penalty discretizations of the Curl-Curl operator on non-conforming meshes , 2016 .
[15] Fei Wang,et al. High-order extended finite element methods for solving interface problems , 2016, Computer Methods in Applied Mechanics and Engineering.
[16] Marcus Sarkis,et al. Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems , 2016, 1602.00603.
[17] Peter Hansbo,et al. CutFEM: Discretizing geometry and partial differential equations , 2015 .
[18] Z. Cai,et al. A recovery-based a posteriori error estimator for H(curl) interface problems , 2015, 1504.00898.
[19] Tao Lin,et al. Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..
[20] Tsuyoshi Nomura,et al. Multiphysics Simulation: Electromechanical System Applications and Optimization , 2014 .
[21] Peng Song,et al. A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..
[22] Zhiming Chen,et al. Detection and classification from electromagnetic induction data , 2013, J. Comput. Phys..
[23] Ralf Hiptmair,et al. Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.
[24] P. Hansbo,et al. A cut finite element method for a Stokes interface problem , 2012, 1205.5684.
[25] Ralf Hiptmair,et al. Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.
[26] Ralf Hiptmair,et al. STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS , 2011 .
[27] Ivan G. Graham,et al. A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..
[28] P. Hansbo,et al. A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .
[29] Zhiming Chen,et al. The adaptive immersed interface finite element method for elliptic and Maxwell interface problems , 2009, J. Comput. Phys..
[30] Jun Zou,et al. A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations , 2008, Math. Comput..
[31] Susanne C. Brenner,et al. A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem , 2008, Numerische Mathematik.
[32] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[33] Arnold Reusken,et al. An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..
[34] Peter Monk,et al. The inverse source problem for Maxwell's equations , 2006 .
[35] R. Kafafy,et al. Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .
[36] Annalisa Buffa,et al. Algebraic convergence for anisotropic edge elements in polyhedral domains , 2005, Numerische Mathematik.
[37] Ilaria Perugia,et al. Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.
[38] Shan Zhao,et al. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .
[39] J. Hesthaven,et al. On the constants in hp-finite element trace inverse inequalities , 2003 .
[40] S. Osher,et al. Level set methods: an overview and some recent results , 2001 .
[41] F. BEN BELGACEM,et al. The Mortar Finite Element Method for 3D Maxwell Equations: First Results , 2001, SIAM J. Numer. Anal..
[42] Zhiming Chen,et al. Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..
[43] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[44] Herbert Edelsbrunner,et al. Triangulations and meshes in computational geometry , 2000, Acta Numerica.
[45] James A. Sethian,et al. Level Set Methods and Fast Marching Methods , 1999 .
[46] M. Costabel,et al. Singularities of Maxwell interface problems , 1999 .
[47] Jun Zou,et al. Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.
[48] Jinchao Xu,et al. Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..
[49] A. A. Arkadan,et al. Dynamic stress in magnetic actuator computed by coupled structural and electromagnetic finite elements , 1996 .
[50] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .
[51] I. Babuska,et al. Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .
[52] K. Bathe,et al. The inf-sup test , 1993 .
[53] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[54] A. A. Shah,et al. An iterative solution method for solving sparse nonsymmetiric linear systems , 1986 .
[55] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[56] Long Chen,et al. Immersed Virtual Element Methods for Maxwell Interface Problems in Three Dimensions , 2022, ArXiv.
[57] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[58] R. Hiptmair,et al. DG Treatment of Non-conforming Interfaces in 3D Curl-Curl Problems , 2016 .
[59] Jens Markus Melenk,et al. Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .
[60] Jinchao Xu,et al. UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .
[61] Weiying Zheng,et al. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..
[62] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[63] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[64] Serge Nicaise,et al. Corner Singularities of Maxwell Interface and Eddy Current Problems , 2004 .
[65] Ilaria Perugia,et al. Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .
[66] Gang Bao,et al. An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography , 2002, SIAM J. Appl. Math..
[67] Klaus-Jürgen Bathe,et al. The inf–sup condition and its evaluation for mixed finite element methods , 2001 .
[68] R. S. Falk,et al. PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .
[69] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .