Manufacturing Process Development for Uprifosbuvir (MK-3682): A Green and Sustainable Process for Preparing Penultimate 2′-Deoxy-α-2′-Chloro-β-2′-Methyluridine

[1]  Andrew J. Neel,et al.  Diverse Catalytic Reactions for the Stereoselective Synthesis of Cyclic Dinucleotide MK-1454. , 2022, Journal of the American Chemical Society.

[2]  T. Itoh,et al.  Engineered Ribosyl-1-Kinase Enables Concise Synthesis of Molnupiravir, an Antiviral for COVID-19 , 2021, ACS central science.

[3]  Timothy J. Wright,et al.  Kilogram-Scale Synthesis of 2′-C-Methyl-arabino-Uridine from Uridine via Dynamic Selective Dipivaloylation , 2021, Organic Process Research & Development.

[4]  P. Maligres,et al.  Organocatalytic Conversion of Nucleosides to Furanoid Glycals. , 2021, The Journal of organic chemistry.

[5]  Timothy J. Wright,et al.  Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods† , 2021, Chemical science.

[6]  L. Bonnac,et al.  Broad-Spectrum Antiviral Strategies and Nucleoside Analogues , 2021, Viruses.

[7]  M. Weisel,et al.  Development and Implementation of an Aluminum-Promoted Phosphorylation in the Uprifosbuvir Manufacturing Route , 2020 .

[8]  Rebecca A. Arvary,et al.  Development of a Green and Sustainable Manufacturing Process for Gefapixant Citrate (MK-7264) Part 2: Development of a Robust Process for Phenol Synthesis , 2020, Organic Process Research & Development.

[9]  Rebecca A. Arvary,et al.  Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases , 2019, Organic Process Research & Development.

[10]  Jun Li,et al.  Evolving Green Chemistry Metrics into Predictive Tools for Decision Making and Benchmarking Analytics , 2018 .

[11]  J. Bilello,et al.  The discovery of IDX21437: Design, synthesis and antiviral evaluation of 2'-α-chloro-2'-β-C-methyl branched uridine pronucleotides as potent liver-targeted HCV polymerase inhibitors. , 2017, Bioorganic & medicinal chemistry letters.

[12]  S. L. Zultanski,et al.  General Principles and Strategies for Salting-Out Informed by the Hofmeister Series , 2017 .

[13]  Yining Ji,et al.  A multifunctional catalyst that stereoselectively assembles prodrugs , 2017, Science.

[14]  A. Klapars,et al.  Mechanism-Based Solution to the ProTide Synthesis Problem: Selective Access to Sofosbuvir, Acelarin, and INX-08189. , 2017, Organic letters.

[15]  Guangdi Li,et al.  Approved Antiviral Drugs over the Past 50 Years , 2016, Clinical Microbiology Reviews.

[16]  Katharine K. Duncan,et al.  Iron(III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20'-vinblastine analogues. , 2012, Organic letters.

[17]  Concepción Jiménez-González,et al.  Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry To Drive More Sustainable Processes , 2011 .

[18]  T. Jonckers,et al.  Practical synthesis of (2'R)-2'-deoxy-2'-C-methyluridine by highly diastereoselective homogeneous hydrogenation. , 2011, The Journal of organic chemistry.

[19]  E. Clercq A 40-Year Journey in Search of Selective Antiviral Chemotherapy* , 2011 .

[20]  J. Montserrat,et al.  2-C-methyluridine modified hammerhead ribozyme against the estrogen receptor. , 2010, Bioorganic & medicinal chemistry letters.

[21]  R. Hartley,et al.  Titanium Carbenoid Reagents for Converting Carbonyl Groups into Alkenes , 2007 .

[22]  I. Davies,et al.  Stereoselective preparation of a cyclopentane-based NK1 receptor antagonist bearing an unsymmetrically substituted sec-sec ether. , 2006, The Journal of organic chemistry.

[23]  D. Cai,et al.  Dimethyltitanocene: From Millimole to Kilomole , 2004 .

[24]  K. Kishikawa,et al.  A new protecting group '3', 5'-O-sulfinyl' for xylo-nucleosides: A simple and efficient synthesis of 3'-amino-3'-deoxyadenosine (a puromycin intermediate), 2,2'-anhydro-pyrimidine nucleosides and 2', 3'-anhydro-adenosine , 2004 .

[25]  E. Monteagudo,et al.  2′-C-Methyluridine phosphoramidite: a new building block for the preparation of RNA analogues carrying the 2′-hydroxyl group , 2001 .

[26]  Alan D. Curzons,et al.  So you think your process is green, how do you know?—Using principles of sustainability to determine what is green–a corporate perspective , 2001 .

[27]  J. Tang,et al.  Efficient Large Scale Synthesis of 2‘-O-Alkyl Pyrimidine Ribonucleosides , 2000 .

[28]  H. Heaney,et al.  The Use of Bis(trimethylsilyl)acetamide and Bis (trimethylsilyl)urea for Protection and as Control Reagents in Synthesis , 1998 .

[29]  M. Wolfe,et al.  2′-C-Alkylribonucleosides: Design, Synthesis, and Conformation , 1997 .

[30]  M. Kabat Synthesis of Digitoxigenin from 3.beta.-Acetoxyandrost-5-en-17-one. Construction of a Suitably Functionalized Pregnane Side Chain via Presumed Allene Oxide Intermediate , 1995 .

[31]  M. Luo,et al.  A stereospecific synthesis of 2',3'-dideoxy-β-L-cytidine (β-L-ddC), a potent inhibitor against human hepatitis B virus (HBV) and human immunodeficiency virus (HIV) , 1994 .

[32]  A. Matsuda,et al.  Nucleosides and nucleotides. 97. Synthesis of new broad spectrum antineoplastic nucleosides, 2'-deoxy-2'-methylidenecytidine (DMDC) and its derivatives. , 1991, Journal of medicinal chemistry.

[33]  A. Matsuda,et al.  Alkyl addition reaction of pyrimidine 2'-ketonucleosides: synthesis of 2'-branched-chain sugar pyrimidine nucleosides (nucleosides and nucleotides. LXXXI. , 1988, Chemical & pharmaceutical bulletin.

[34]  S. Shuto,et al.  Synthesis of 6, 2'-Methano-cyclouridine, a Uridine Fixed in High-Anti Conformation (Nucleosides and Nucleotides. LX) , 1985 .

[35]  J. B. Lambert,et al.  The modes of .beta.-silyl involvement in solvolysis , 1982 .

[36]  C. L. Frye,et al.  Structure-reactivity relationships of N-alkyl(trimethylsilyl)amides , 1978 .

[37]  J. McCloskey,et al.  Mass spectrometry of nucleic acid constituents. Trimethylsilyl derivatives of nucleosides , 1971 .

[38]  J. F. Klebe Silyl-proton exchange reactions , 1970 .