Global Observations of Mantle Discontinuities Using SS and PP Precursors

SS and PP precursors are currently the only body wave data types that have significant coverage in both oceanic and continental regions to study the existence and characteristics of mantle discontinuities on a global scale. Here, the techniques used by global seismologists to observe SS and PP precursors are reviewed. Seismograms, aligned on SS or PP, are stacked using normal move out (NMO) techniques to obtain common depth point gathers. Bootstrap methods are employed to determine 95% confidence levels of the stacks and robustness of the observations. With these relatively simple techniques, a range of discontinuities has been found in the mantle up to 1,200 km depth. The stacks are dominated by the transition zone discontinuities at 410, 520 and 660 km depth, but additional discontinuities at 220, 300–350, 800–900 and 1,100–1,200 km depth are also seen in certain regions. An overview is given of the most recent observational results with a discussion of their mineral physical interpretation and geodynamical significance. Both seismology and mineral physics agree on the level of complexity at the transition discontinuities: a simple 410, a more complicated 520 and a highly complicated 660-km discontinuity are consistently found in both disciplines.

[1]  R. Kind,et al.  The Nature of the 660-Kilometer Upper-Mantle Seismic Discontinuity from Precursors to the PP Phase , 1996, Science.

[2]  G. Mueller,et al.  The reflectivity method; a tutorial , 1985 .

[3]  H. Mao,et al.  Transformation of stishovite to a denser phase at lower-mantle pressures , 1995, Nature.

[4]  F. Neele,et al.  Gross errors in upper‐mantle discontinuity topography from underside reflection data , 1997 .

[5]  Toshihiro Suzuki,et al.  Thermodynamic properties of α‐quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures , 1995 .

[6]  J. Woodhouse,et al.  Topography of the 410-km discontinuity from PP and SS precursors , 2005 .

[7]  A. Deuss Seismic observations of transition-zone discontinuities beneath hotspot locations , 2007 .

[8]  P. Mumby,et al.  Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States , 2004 .

[9]  A. Dziewoński,et al.  Global de-correlation of the topography of transition zone discontinuities , 1998 .

[10]  H. Kawakatsu,et al.  Search for seismic discontinuities in the lower mantle , 2001 .

[11]  A. Dziewoński,et al.  Preferential detection of the Lehmann discontinuity beneath continents , 2001 .

[12]  P. Shearer,et al.  Determination and analysis of long-wavelength transition zone structure using SS precursors , 2008 .

[13]  A. Dziewoński,et al.  Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities , 2001 .

[14]  D. L. Anderson,et al.  Upper mantle structure of western North America from apparent velocities of P waves , 1965 .

[15]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[16]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[17]  G. MacDonald Composition and petrology of the earth's mantle , 1977 .

[18]  Thomas H. Jordan,et al.  Mantle layering from ScS reverberations: 2. The transition zone , 1991 .

[19]  N. Schmerr,et al.  Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors , 2006 .

[20]  Jennifer Andrews,et al.  Detailed nature of the 660 km region of the mantle from global receiver function data , 2008 .

[21]  S. Grand,et al.  Depth of the upper mantle discontinuities beneath the East Pacific Rise , 1996 .

[22]  D. Frost,et al.  Experimental determination of the effect of H2O on the 410-km seismic discontinuity , 2007 .

[23]  Wenbo Xu,et al.  The effect of bulk composition and temperature on mantle seismic structure , 2008 .

[24]  P. Shearer,et al.  A map of topography on the 410‐km discontinuity from PP precursors , 1999 .

[25]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[26]  M. Weber,et al.  The upper mantle transition zone discontinuities in the Pacific as determined by short-period array data , 2002 .

[27]  S. Karato On the Lehmann discontinuity , 1992 .

[28]  J. Woodhouse,et al.  Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.

[29]  T. Jordan,et al.  Mantle layering from ScS reverberations: 3. The upper mantle , 1991 .

[30]  A. Vauchez,et al.  Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcano xenoliths (Tanzania) , 2005 .

[31]  S. Rondenay Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves , 2009 .

[32]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[33]  R. Angel,et al.  Stability of high-density clinoenstatite at upper-mantle pressures , 1992, Nature.

[34]  L. Knopoff,et al.  The Upper mantle , 1972 .

[35]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[36]  G. Helffrich Topography of the transition zone seismic discontinuities , 2000 .

[37]  J. Woodhouse,et al.  Reflectivity of the 410‐km discontinuity from PP and SS precursors , 2005 .

[38]  F. Niu,et al.  Broadband converted phases from midmantle discontinuities , 1998 .

[39]  Julian P. Lowman,et al.  Mantle Convection in the Earth and Planets , 2002 .

[40]  Lane R. Johnson,et al.  Array measurements of P velocities in the upper mantle , 1967 .

[41]  K. J. MUIRHEAD,et al.  Eliminating False Alarms when detecting Seismic Events Automatically , 1968, Nature.

[42]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[43]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[44]  J. Montagner,et al.  Global‐scale analysis of the mantle Pds phases , 1999 .

[45]  Yu Jeffrey Gu,et al.  Global variability of transition zone thickness , 2002 .

[46]  Flanagan,et al.  Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities. , 1999, Science.

[47]  N. Schmerr,et al.  Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity , 2007, Science.

[48]  R. Ellis Cosmology: The infrared dawn of starlight , 2005, Nature.

[49]  D. Weidner,et al.  Chemical‐ and Clapeyron‐induced buoyancy at the 660 km discontinuity , 1998 .

[50]  Martin Schimmel,et al.  Noise reduction and detection of weak, coherent signals through phase-weighted stacks , 1997 .

[51]  F. A. Dahlen,et al.  Finite-frequency sensitivity kernels for boundary topography perturbations , 2004 .

[52]  C. Thomas,et al.  Improving Seismic Resolution Through Array Processing Techniques , 2009 .

[53]  C. Chapman A first‐motion alternative to Geometrical Ray Theory , 1976 .

[54]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[55]  Emmanuel Chaljub,et al.  Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .

[56]  P. Shearer,et al.  Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels , 2008 .

[57]  P. Shearer,et al.  Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure , 1999 .

[58]  S. Chakraborty,et al.  Role of element solubility on the kinetics of element partitioning: In situ observations and a thermodynamic kinetic model , 2003 .

[59]  P. Shearer Upper Mantle Seismic Discontinuities , 2013 .

[60]  Peter M. Shearer,et al.  Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity , 1990, Nature.

[61]  J. Woodhouse,et al.  The nature of the Lehmann discontinuity from its seismological Clapeyron slopes , 2004 .

[62]  B. Wood The Effect of H2O on the 410-Kilometer Seismic Discontinuity , 1995, Science.

[63]  C. Thomas,et al.  Mantle transition zone structure along a profile in the SW Pacific: thermal and compositional variations , 2009 .

[64]  P. Shearer,et al.  A global study of transition zone thickness using receiver functions , 2006 .

[65]  P. Shearer,et al.  Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms , 2006 .

[66]  D. Rubie,et al.  Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle , 2008, Science.

[67]  I. Lehmann S and the Structure of the Upper Mantle , 1961 .

[68]  N. Simmons,et al.  Multiple seismic discontinuities near the base of the transition zone in the Earth's mantle , 2000, Nature.

[69]  P. Earle,et al.  Survey of precursors to P'P': Fine structure of mantle discontinuities , 2003 .

[70]  M. Sacchi,et al.  Radon Transform Methods and Their Applications in Mapping Mantle Reflectivity Structure , 2009 .

[71]  K. Hirose Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle , 2002 .

[72]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[73]  G. Bock Synthetic seismogram images of upper mantle structure: No evidence for a 520‐km discontinuity , 1994 .

[74]  D. L. Anderson Theory of Earth , 2014 .

[75]  R. Kind,et al.  Seismic evidence for very deep roots of continents , 1996 .

[76]  J. Vidale,et al.  Sharpness of upper-mantle discontinuities determined from high-frequency reflections , 1993, Nature.

[77]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[78]  P. Shearer Transition zone velocity gradients and the 520-km discontinuity , 1996 .

[79]  M. Weber,et al.  A reflector at 200 km depth beneath the northwest Pacific , 2001 .

[80]  J. Woodhouse,et al.  A systematic search for mantle discontinuities using SS‐precursors , 2002 .