A Lower Bound for the Dimension of Bernoulli Convolutions

ABSTRACT Let β ∈ (1, 2) and let Hβ denote Garsia’s entropy for the Bernoulli convolution μβ associated with β. In the present article we show that Hβ > 0.82 for all β ∈ (1, 2) and improve this bound for certain ranges. Combined with recent results by Hochman and Breuillard-Varjú, this yields for all β ∈ (1, 2). In addition, we show that if an algebraic β is such that for some k ⩾ 2, then . Such is, for instance, any root of a Pisot number which is not a Pisot number itself.

[1]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[2]  E. Breuillard,et al.  Entropy of Bernoulli convolutions and uniform exponential growth for linear groups , 2015, Journal d'Analyse Mathématique.

[3]  S. Lalley Random Series in Powers of Algebraic Integers: Hausdorff Dimension of the Limit Distribution , 1998 .

[4]  A. Garsia Arithmetic properties of Bernoulli convolutions , 1962 .

[5]  P. P. Varj'u Recent progress on Bernoulli convolutions , 2016, 1608.04210.

[6]  A. Garsia Entropy and singularity of infinite convolutions. , 1963 .

[7]  W. Parry On theβ-expansions of real numbers , 1960 .

[8]  R. Tennant Algebra , 1941, Nature.

[9]  M. Urbanski,et al.  On the Hausdorff dimension of some fractal sets , 1989 .

[10]  J. Alexander,et al.  The Entropy of a Certain Infinitely Convolved Bernoulli Measure , 1991 .

[11]  R. Mauldin,et al.  The equivalence of some Bernoulli convolutions to Lebesgue measure , 1998 .

[12]  Michael Hochman,et al.  On self-similar sets with overlaps and inverse theorems for entropy in $\mathbb{R}^d$ , 2012, 1503.09043.

[13]  E. Breuillard,et al.  On the dimension of Bernoulli convolutions , 2016, The Annals of Probability.

[14]  N. Sidorov,et al.  A lower bound for Garsia's entropy for certain Bernoulli convolutions , 2008, LMS J. Comput. Math..

[16]  Robert F. Tichy,et al.  Combinatorial and Arithmetical Properties of Linear Numeration Systems , 2002, Comb..

[17]  P-4ur,et al.  ON A FAMILY OF SYMMETRIC BERNOULLI CONVOLUTIONS , 2002 .

[18]  B. Solomyak On the random series $\sum \pm \lambda^n$ (an Erdös problem) , 1995 .