A Lower Bound for the Dimension of Bernoulli Convolutions
暂无分享,去创建一个
[1] A. Rényi. Representations for real numbers and their ergodic properties , 1957 .
[2] E. Breuillard,et al. Entropy of Bernoulli convolutions and uniform exponential growth for linear groups , 2015, Journal d'Analyse Mathématique.
[3] S. Lalley. Random Series in Powers of Algebraic Integers: Hausdorff Dimension of the Limit Distribution , 1998 .
[4] A. Garsia. Arithmetic properties of Bernoulli convolutions , 1962 .
[5] P. P. Varj'u. Recent progress on Bernoulli convolutions , 2016, 1608.04210.
[6] A. Garsia. Entropy and singularity of infinite convolutions. , 1963 .
[7] W. Parry. On theβ-expansions of real numbers , 1960 .
[8] R. Tennant. Algebra , 1941, Nature.
[9] M. Urbanski,et al. On the Hausdorff dimension of some fractal sets , 1989 .
[10] J. Alexander,et al. The Entropy of a Certain Infinitely Convolved Bernoulli Measure , 1991 .
[11] R. Mauldin,et al. The equivalence of some Bernoulli convolutions to Lebesgue measure , 1998 .
[12] Michael Hochman,et al. On self-similar sets with overlaps and inverse theorems for entropy in $\mathbb{R}^d$ , 2012, 1503.09043.
[13] E. Breuillard,et al. On the dimension of Bernoulli convolutions , 2016, The Annals of Probability.
[14] N. Sidorov,et al. A lower bound for Garsia's entropy for certain Bernoulli convolutions , 2008, LMS J. Comput. Math..
[16] Robert F. Tichy,et al. Combinatorial and Arithmetical Properties of Linear Numeration Systems , 2002, Comb..
[17] P-4ur,et al. ON A FAMILY OF SYMMETRIC BERNOULLI CONVOLUTIONS , 2002 .
[18] B. Solomyak. On the random series $\sum \pm \lambda^n$ (an Erdös problem) , 1995 .