Uncertainty quantification in a chemical system using error estimate-based mesh adaption

This paper describes a rigorous a posteriori error analysis for the stochastic solution of non-linear uncertain chemical models. The dual-based a posteriori stochastic error analysis extends the methodology developed in the deterministic finite elements context to stochastic discretization frameworks. It requires the resolution of two additional (dual) problems to yield the local error estimate. The stochastic error estimate can then be used to adapt the stochastic discretization. Different anisotropic refinement strategies are proposed, leading to a cost-efficient tool suitable for multi-dimensional problems of moderate stochastic dimension. The adaptive strategies allow both for refinement and coarsening of the stochastic discretization, as needed to satisfy a prescribed error tolerance. The adaptive strategies were successfully tested on a model for the hydrogen oxidation in supercritical conditions having 8 random parameters. The proposed methodologies are however general enough to be also applicable for a wide class of models such as uncertain fluid flows.

[1]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[2]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[3]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[6]  Khachik Sargsyan,et al.  Bayesian Inference of Spectral Expansions for Predictability Assessment in Stochastic Reaction Networks , 2009 .

[7]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[8]  M. Y. Hussaini,et al.  A variance reduction method based on sensitivity derivatives , 2006 .

[9]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Michał Kleiber,et al.  Stochastic finite element modelling in linear transient heat transfer , 1997 .

[11]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[12]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[13]  Habib N. Najm,et al.  Natural Convection in a Closed Cavity under Stochastic Non-Boussinesq Conditions , 2005, SIAM J. Sci. Comput..

[14]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[15]  Olivier Le Maitre,et al.  Dual-based {\itshape a posteriori} error estimate for stochastic finite element methods , 2007 .

[16]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[17]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[18]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[19]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[20]  Marcin Kamiński,et al.  Stochastic finite element modeling of transient heat transfer in layered composites , 1999 .

[21]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[22]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[23]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[24]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[25]  MULTI-RESOLUTION-ANALYSIS FOR UNCERTAINTY QUANTIFICATION IN CHEMICAL SYSTEMS , 2006 .

[26]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[27]  L. Mathelin,et al.  DUAL-BASED A POSTERIORI ERROR ESTIMATE FOR STOCHASTIC FINITE ELEMENT METHODS , 2008 .

[28]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[29]  Simona Perotto,et al.  Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..

[30]  P. Moral,et al.  Sequential Monte Carlo samplers for rare events , 2006 .

[31]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[32]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .