Uncertainty quantification in a chemical system using error estimate-based mesh adaption
暂无分享,去创建一个
[1] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[2] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[3] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[4] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[5] Roger Ghanem,et al. Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .
[6] Khachik Sargsyan,et al. Bayesian Inference of Spectral Expansions for Predictability Assessment in Stochastic Reaction Networks , 2009 .
[7] R. Ghanem. Probabilistic characterization of transport in heterogeneous media , 1998 .
[8] M. Y. Hussaini,et al. A variance reduction method based on sensitivity derivatives , 2006 .
[9] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] Michał Kleiber,et al. Stochastic finite element modelling in linear transient heat transfer , 1997 .
[11] A. Saltelli,et al. Importance measures in global sensitivity analysis of nonlinear models , 1996 .
[12] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[13] Habib N. Najm,et al. Natural Convection in a Closed Cavity under Stochastic Non-Boussinesq Conditions , 2005, SIAM J. Sci. Comput..
[14] Olivier P. Le Maître,et al. Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..
[15] Olivier Le Maitre,et al. Dual-based {\itshape a posteriori} error estimate for stochastic finite element methods , 2007 .
[16] Y. Marzouk,et al. Uncertainty quantification in chemical systems , 2009 .
[17] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[18] D. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .
[19] Habib N. Najm,et al. Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..
[20] Marcin Kamiński,et al. Stochastic finite element modeling of transient heat transfer in layered composites , 1999 .
[21] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[22] G. D. Byrne,et al. VODE: a variable-coefficient ODE solver , 1989 .
[23] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[24] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[25] MULTI-RESOLUTION-ANALYSIS FOR UNCERTAINTY QUANTIFICATION IN CHEMICAL SYSTEMS , 2006 .
[26] M. Lemaire,et al. Stochastic Finite Elements , 2010 .
[27] L. Mathelin,et al. DUAL-BASED A POSTERIORI ERROR ESTIMATE FOR STOCHASTIC FINITE ELEMENT METHODS , 2008 .
[28] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[29] Simona Perotto,et al. Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..
[30] P. Moral,et al. Sequential Monte Carlo samplers for rare events , 2006 .
[31] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[32] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .