Regularity structures for quasilinear singular SPDEs

. We prove the well-posed character of a regularity structure formulation of the quasi- linear generalized (KPZ) equation and give the explicit form of the renormalized equation in the full subcritical regime. Convergence results for the solution of the regularized renormalized equation are obtained in regimes that cover the spacetime white noise case.

[1]  N. Berglund An Introduction to Singular Stochastic PDEs , 2022 .

[2]  F. Otto,et al.  A diagram-free approach to the stochastic estimates in regularity structures , 2021, 2112.10739.

[3]  Y. Bruned,et al.  Locality for singular stochastic PDEs , 2021, 2109.00399.

[4]  Felix Otto,et al.  A priori bounds for quasi-linear SPDEs in the full sub-critical regime , 2021, 2103.11039.

[5]  F. Otto,et al.  The structure group for quasi-linear equations via universal enveloping algebras , 2021, Communications of the American Mathematical Society.

[6]  Yvain Bruned,et al.  Renormalised singular stochastic PDEs , 2021, 2101.11949.

[7]  Dominique Manchon,et al.  Algebraic deformation for (S)PDEs , 2020, Journal of the Mathematical Society of Japan.

[8]  I. Bailleul,et al.  A tourist's guide to regularity structures and singular stochastic PDEs , 2020, 2006.03524.

[9]  L. Zambotti,et al.  Hairer’s reconstruction theorem without regularity structures , 2020, 2005.09287.

[10]  I. Bailleul,et al.  Paracontrolled calculus for quasilinear singular PDEs , 2019, Stochastics and Partial Differential Equations: Analysis and Computations.

[11]  M. Gubinelli A PANORAMA OF SINGULAR SPDES , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[12]  Ivan Corwin,et al.  Some recent progress in singular stochastic PDEs. , 2019, 1904.00334.

[13]  M'at'e Gerencs'er Nondivergence form quasilinear heat equations driven by space-time white noise , 2019, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[14]  N. Berglund An Introduction to Singular Stochastic PDEs , 2019, 1901.07420.

[15]  Scott A. Smith,et al.  Parabolic equations with rough coefficients and singular forcing. , 2018, 1803.07884.

[16]  Martin Hairer,et al.  A Solution Theory for Quasilinear Singular SPDEs , 2017, Communications on Pure and Applied Mathematics.

[17]  Martin Hairer,et al.  Renormalising SPDEs in regularity structures , 2017, 1711.10239.

[18]  Y. Bruned Recursive formulae in regularity structures , 2017, 1710.10634.

[19]  Martin Hairer,et al.  An analytic BPHZ theorem for regularity structures , 2016, 1612.08138.

[20]  Martin Hairer,et al.  Algebraic renormalisation of regularity structures , 2016, Inventiones mathematicae.

[21]  M. Gubinelli,et al.  Paracontrolled quasilinear SPDEs , 2016, The Annals of Probability.

[22]  A. Debussche,et al.  Quasilinear generalized parabolic Anderson model equation , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[23]  Martin Hairer,et al.  An analyst's take on the BPHZ theorem , 2016, 1704.08634.

[24]  F. Otto,et al.  Quasilinear SPDEs via Rough Paths , 2016, Archive for Rational Mechanics and Analysis.

[25]  H. Weber,et al.  Stochastic PDEs, Regularity Structures, and Interacting Particle Systems , 2015, 1508.03616.

[26]  Martin Hairer,et al.  A Course on Rough Paths: With an Introduction to Regularity Structures , 2014 .

[27]  Martin Hairer,et al.  A theory of regularity structures , 2013, 1303.5113.

[28]  Nicolas Perkowski,et al.  PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES , 2012, Forum of Mathematics, Pi.

[29]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[30]  H. Stewart Generation of analytic semigroups by strongly elliptic operators , 1974 .

[31]  Martin Hairer,et al.  A Course on Rough Paths , 2020, Universitext.

[32]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .