Multiway Reliability Analysis of Mobile Broadband Networks

Understanding and characterizing the reliability of a mobile broadband network is a challenging task due to the presence of a multitude of root causes that operate at different temporal and spatial scales. This, in turn, limits the use of classical statistical methods for characterizing the mobile network's reliability. We propose leveraging tensor factorizations, a well-established data mining method, to address this challenge. We represent a year-long time series of outages, from two mobile operators as multi-way arrays, and demonstrate how tensor factorizations help in extracting the outage patterns at various time-scales, making it easy to locate possible root causes. Unlike traditional methods of time series analysis, tensor factorizations provide a compact and interpretable picture of outages.

[1]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[2]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[3]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[4]  C. Martin 2015 , 2015, Les 25 ans de l’OMC: Une rétrospective en photos.

[5]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[6]  Binh Nguyen,et al.  ABSENCE: Usage-based Failure Detection in Mobile Networks , 2015, MobiCom.

[7]  R. Bro,et al.  A new efficient method for determining the number of components in PARAFAC models , 2003 .

[8]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[9]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[10]  Danilo Giordano,et al.  Five Years at the Edge: Watching Internet From the ISP Network , 2018, IEEE/ACM Transactions on Networking.

[11]  J. Heidemann,et al.  Back Out : End-to-end Inference of Common Points-of-Failure in the Internet ( extended ) , 2018 .

[12]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[13]  Ahmed Elmokashfi,et al.  The Nornet Edge platform for mobile broadband measurements , 2014, Comput. Networks.

[14]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[15]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[16]  David Clark,et al.  Advancing the Art of Internet Edge Outage Detection , 2018, Internet Measurement Conference.

[17]  Nikos D. Sidiropoulos,et al.  Tensors for Data Mining and Data Fusion , 2016, ACM Trans. Intell. Syst. Technol..

[18]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[19]  Bülent Yener,et al.  Modeling and Multiway Analysis of Chatroom Tensors , 2005, ISI.

[20]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[21]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[22]  A. Azzouz 2011 , 2020, City.

[23]  S. M. García,et al.  2014: , 2020, A Party for Lazarus.

[24]  Xiaofeng Gong,et al.  Tensor decomposition of EEG signals: A brief review , 2015, Journal of Neuroscience Methods.

[25]  Dong Zhou,et al.  Adding the Next Nine: An Investigation of Mobile Broadband Networks Availability , 2017, MobiCom.

[26]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Alberto Dainotti,et al.  How to Find Correlated Internet Failures , 2019, PAM.

[28]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.

[29]  Jimeng Sun,et al.  SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping , 2018, KDD.

[30]  Tamara G. Kolda,et al.  Generalized Canonical Polyadic Tensor Decomposition , 2018, SIAM Rev..

[31]  Ahmed Elmokashfi,et al.  Dissecting packet loss in mobile broadband networks from the edge , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[32]  Tuan D Pham,et al.  Tensor Decomposition for Colour Image Segmentation of Burn Wounds , 2019, Scientific Reports.

[33]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[34]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[35]  Ahmed Elmokashfi,et al.  Measuring the Reliability of Mobile Broadband Networks , 2014, Internet Measurement Conference.

[36]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[37]  Xin Wang,et al.  Graph based Tensor Recovery for Accurate Internet Anomaly Detection , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[38]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[39]  Hyunsoo Kim,et al.  Non-negative Tensor Factorization Based on Alternating Large-scale Non-negativity-constrained Least Squares , 2007, 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering.