Algebraic geometry codes: general theory

World Scientific Review Volume-9in x 6in duursma-copy3 This chapter describes some of the basic properties of geometric Goppa codes, including relations to other families of codes, bounds for the parameters , and sufficient conditions for efficient error correction. Special attention is given to recent results on two-point codes from Hermitian curves and to applications for secret sharing.

[1]  Gretchen L. Matthews Weierstrass Pairs and Minimum Distance of Goppa Codes , 2001, Des. Codes Cryptogr..

[2]  Norman E. Hurt Many Rational Points , 2003 .

[3]  Johan P. Hansen,et al.  Linkage and Codes on Complete Intersections , 2003, Applicable Algebra in Engineering, Communication and Computing.

[4]  Juergen Bierbrauer Introduction to coding theory , 2005, Discrete mathematics and its applications.

[5]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[6]  R. Schoof,et al.  Weight formulas for ternary Melas codes , 1992 .

[7]  Peter Beelen,et al.  A generalization of the Weierstrass semigroup , 2006 .

[8]  K. Lauter Deligne–Lusztig curves as ray class fields , 1999 .

[9]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[10]  Peter Beelen,et al.  Asymptotically good towers and differential equations , 2004, Compositio Mathematica.

[11]  J. H. Lint,et al.  Introduction to coding theory and algebraic geometry , 1989 .

[12]  Iwan M. Duursma,et al.  Decoding codes from curves and cyclic codes , 1993 .

[13]  Harvey Cohn,et al.  Introduction to the construction of class fields , 1985 .

[14]  John Talbot,et al.  The number of points on an algebraic curve over a finite field , 2007 .

[15]  Iwan M. Duursma,et al.  Reed-Muller Codes on Complete Intersections , 2001, Applicable Algebra in Engineering, Communication and Computing.

[16]  Iwan M. Duursma,et al.  Weight distributions of geometric Goppa codes , 1999 .

[17]  N. Elkies Explicit Towers of Drinfeld Modular Curves , 2000, math/0005140.

[18]  Chaoping Xing,et al.  Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink bound , 2003, IEEE Transactions on Information Theory.

[19]  M. Tsfasman,et al.  Algebraic Geometric Codes: Basic Notions , 2007 .

[20]  Masaaki Homma,et al.  The Complete Determination of the Minimum Distance of Two-Point Codes on a Hermitian Curve , 2006, Des. Codes Cryptogr..

[21]  Cícero Carvalho,et al.  On Goppa Codes and Weierstrass Gaps at Several Points , 2005, Des. Codes Cryptogr..

[22]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[23]  Michael A. Tsfasman,et al.  Geometric approach to higher weights , 1995, IEEE Trans. Inf. Theory.

[24]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[25]  Richard E. Blahut Algebraic Codes on Lines, Planes, and Curves: An Engineering Approach , 2008 .

[26]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[27]  Iwan M. Duursma,et al.  A symmetric Roos bound for linear codes , 2006, J. Comb. Theory, Ser. A.

[28]  Dirk Ehrhard,et al.  Achieving the designed error capacity in decoding algebraic-geometric codes , 1993, IEEE Trans. Inf. Theory.

[29]  N. Hurt,et al.  Many Rational Points: Coding Theory and Algebraic Geometry , 2003 .

[30]  Jens Peter Pedersen,et al.  Automorphism groups of Ree type Deligne-Lusztig curves and function fields. , 1993 .

[31]  Gretchen L. Matthews Codes from the Suzuki function field , 2004, IEEE Transactions on Information Theory.

[32]  Iwan M. Duursma,et al.  Monomial embeddings of the Klein curve , 1999, Discret. Math..

[33]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[34]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[35]  Seung Kook Park Applications of Algebraic Curves to Cryptography , 2007 .

[36]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[37]  Yuan Zhou Introduction to Coding Theory , 2010 .

[38]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[39]  Kenneth W. Shum,et al.  A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.

[40]  V. D. Goppa Geometry and Codes , 1988 .

[41]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[42]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[43]  Gábor Korchmáros,et al.  Quotient curves of the Suzuki curve , 2006 .

[44]  Serguei A. Stepanov,et al.  Codes on Algebraic Curves , 1999 .

[45]  Peter Beelen,et al.  The order bound for general algebraic geometric codes , 2007, Finite Fields Their Appl..

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Harald Niederreiter,et al.  Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .

[48]  Iwan M. Duursma,et al.  Geometric Reed-Solomon codes of length 64 and 65 over F8 , 2003, IEEE Trans. Inf. Theory.

[49]  R. Schoof Families of curves and weight distributions of codes , 1995, math/9504222.

[50]  Cem Güneri Algebraic geometric codes: basic notions , 2008 .

[51]  Iwan M. Duursma Algebraic decoding using special divisors , 1993, IEEE Trans. Inf. Theory.

[52]  Iwan M. Duursma,et al.  Majority coset decoding , 1993, IEEE Trans. Inf. Theory.

[53]  Chaoping Xing,et al.  Excellent nonlinear codes from algebraic function fields , 2005, IEEE Transactions on Information Theory.

[54]  Tom Høholdt,et al.  An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound: The first steps , 1997, IEEE Trans. Inf. Theory.

[55]  Seon Jeong Kim On the index of the Weierstrass semigroup of a pair of points on a curve , 1994 .

[56]  Iwan M. Duursma,et al.  Preparata codes through lattices , 2001, IEEE Trans. Inf. Theory.

[57]  Noam D. Elkies,et al.  Explicit Modular Towers , 2001, math/0103107.

[58]  Hao Chen,et al.  Algebraic Geometric Secret Sharing Schemes and Secure Multi-Party Computations over Small Fields , 2006, CRYPTO.

[59]  Venkatesan Guruswami,et al.  Correlated Algebraic-Geometric Codes: Improved List Decoding over Bounded Alphabets , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[60]  Johan P. Hansen,et al.  Algebraic Geometry Codes , 2005 .

[61]  Henning Stichtenoth,et al.  Group codes on certain algebraic curves with many rational points , 1990, Applicable Algebra in Engineering, Communication and Computing.

[62]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[63]  Dirk Ehrhard,et al.  Decoding Algebraic-Geometric Codes by solving a key equation , 1992 .

[64]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[65]  Oliver Pretzel,et al.  Codes and Algebraic Curves , 1998 .

[66]  H. Stichtenoth,et al.  EXPLICIT TOWERS OF FUNCTION FIELDS OVER FINITE FIELDS , 2006 .

[67]  Ruud Pellikaan,et al.  The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.

[68]  Judy L. Walker,et al.  Codes and Curves , 2000, Student mathematical library.

[69]  Aart Blokhuis,et al.  Hermitian unitals are code words , 1991, Discret. Math..

[70]  Noam D. Elkies,et al.  Excellent codes from modular curves , 2001, STOC '01.

[71]  Jens Peter Pedersen,et al.  A function field related to the Ree group , 1992 .

[72]  P. V. Kumar,et al.  On the true minimum distance of Hermitian codes , 1992 .

[73]  Jason McCullough,et al.  A GENERALIZED FLOOR BOUND FOR THE MINIMUM DISTANCE OF GEOMETRIC GOPPA CODES AND ITS APPLICATION TO TWO-POINT CODES , 2004, math/0408341.

[74]  Chen Hao Algebraic geometric codes with applications , 2007 .

[75]  R. F. Lax,et al.  Consecutive Weierstrass gaps and minimum distance of Goppa codes , 1993 .

[76]  Gretchen L. Matthews,et al.  On the floor and the ceiling of a divisor , 2006, Finite Fields Their Appl..

[77]  Jennifer D. Key Hermitian varieties as codewords , 1991, Des. Codes Cryptogr..