Cryptanalysis of a Batch Proxy Quantum Blind Signature Scheme

The security analysis of a batch proxy quantum blind signature scheme is given, which shows it does not satisfy the verifiability of proxy blind signature. Furthermore, a malicious signature receiver can forge valid batch proxy blind signatures. Therefore, this scheme also does not satisfy the unforgeability of proxy blind signature in the sense. A feasible method to deal with these problems is also discussed in the end.

[1]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[2]  Guang-Can Guo,et al.  Comment on “Quantum key distribution without alternative measurements” [Phys. Rev. A 61 , 052312 (2000)] , 2001 .

[3]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[4]  Yuan Tian,et al.  A proxy blind signature scheme based on quantum entanglement , 2013, Optical and Quantum Electronics.

[5]  Qiao-Yan Wen,et al.  Threshold proxy quantum signature scheme with threshold shared verification , 2008 .

[6]  Wen Qiao-Yan,et al.  Teleportation attack on the QSDC protocol with a random basis and order , 2008 .

[7]  Qiaoyan Wen,et al.  Cryptanalysis and improvement of multiparty quantum secret sharing schemes , 2008 .

[8]  Tian-Yin Wang,et al.  Cryptanalysis of dynamic quantum secret sharing , 2013, Quantum Inf. Process..

[9]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[10]  Tian-Yin Wang,et al.  One-time proxy signature based on quantum cryptography , 2012, Quantum Inf. Process..

[11]  Zhang Jian-zhong New Proxy Blind Signature Scheme Based on Bilinear Pairings , 2007 .

[12]  Ying Guo,et al.  Batch proxy quantum blind signature scheme , 2011, Science China Information Sciences.

[13]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[14]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[15]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[16]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[17]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[18]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[19]  Xiao-jun Wen,et al.  An inter-bank E-payment protocol based on quantum proxy blind signature , 2013, Quantum Inf. Process..

[20]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[21]  Wen Qiao-Yan,et al.  Analysis and improvement of multiparty controlled quantum secure direct communication protocol , 2008 .

[22]  Hai-Jing Cao,et al.  A Quantum Proxy Weak Blind Signature Scheme , 2014 .

[23]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.

[24]  Tian-Yin Wang,et al.  Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements , 2011 .

[25]  Fen-Zhuo Guo,et al.  Consistency of shared reference frames should be reexamined , 2008 .

[26]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[27]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[28]  Xiao-Qiu Cai,et al.  Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature , 2013, Quantum Inf. Process..

[29]  Zuowen Tan,et al.  An Off-line Electronic Cash Scheme Based on Proxy Blind Signature , 2011, Comput. J..

[30]  Adan Cabello Reply to `Comment on ``Quantum key distribution without alternative measurements''' , 2000 .

[31]  Qiaoyan Wen,et al.  Security of a kind of quantum secret sharing with single photons , 2011, Quantum Inf. Comput..

[32]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[33]  Zhang Jian-zhong Off-line E-cash System with Multiple Banks Based on Elliptic Curve , 2007 .