Polynomial Preconditioned Arnoldi
暂无分享,去创建一个
[1] James Demmel,et al. Avoiding communication in sparse matrix computations , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.
[2] F. Chatelin. Spectral approximation of linear operators , 2011 .
[3] H. Thornquist. Fixed-Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem , 2006 .
[4] Ronald B. Morgan,et al. Polynomial Preconditioned GMRES and GMRES-DR , 2015, SIAM J. Sci. Comput..
[5] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[6] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[7] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[8] Danny C. Sorensen,et al. Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..
[9] Lloyd N. Trefethen,et al. A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[10] R. Morgan,et al. A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity , 2006 .
[11] Kesheng Wu,et al. Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..
[12] E. Stiefel. Kernel polynomial in linear algebra and their numerical applications, in : Further contributions to the determination of eigenvalues , 1958 .
[13] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[14] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[15] H. Rutishauser. Theory of Gradient Methods , 1959 .
[16] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .
[17] Chao Yang,et al. A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems , 2015, SIAM J. Sci. Comput..
[18] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[19] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .
[20] John Rossi,et al. Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..
[21] R. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .
[22] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[23] A. Spence,et al. Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .
[24] C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.
[25] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[26] Tosio Kato. Perturbation theory for linear operators , 1966 .
[27] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[28] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[29] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[30] Kesheng Wu,et al. Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems , 1998, IRREGULAR.
[31] Y. Saad,et al. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .
[32] Gérard Meurant,et al. Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES , 2012, SIAM J. Matrix Anal. Appl..
[33] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[34] Mark Embree,et al. The Arnoldi Eigenvalue Iteration with Exact Shifts Can Fail , 2009, SIAM J. Matrix Anal. Appl..
[35] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..