Polynomial Preconditioned Arnoldi

Polynomial preconditioning can improve the convergence of the Arnoldi method for computing eigenvalues. Such preconditioning significantly reduces the cost of orthogonalization; for difficult problems, it can also reduce the number of matrix-vector products. Parallel computations can particularly benefit from the reduction of communication-intensive operations. The GMRES algorithm provides a simple and effective way of generating the preconditioning polynomial. For some problems high degree polynomials are especially effective, but they can lead to stability problems that must be mitigated. A two-level "double polynomial preconditioning" strategy provides an effective way to generate high-degree preconditioners.

[1]  James Demmel,et al.  Avoiding communication in sparse matrix computations , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[2]  F. Chatelin Spectral approximation of linear operators , 2011 .

[3]  H. Thornquist Fixed-Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem , 2006 .

[4]  Ronald B. Morgan,et al.  Polynomial Preconditioned GMRES and GMRES-DR , 2015, SIAM J. Sci. Comput..

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[7]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[8]  Danny C. Sorensen,et al.  Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..

[9]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[10]  R. Morgan,et al.  A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity , 2006 .

[11]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..

[12]  E. Stiefel Kernel polynomial in linear algebra and their numerical applications, in : Further contributions to the determination of eigenvalues , 1958 .

[13]  L. Reichel,et al.  A Newton basis GMRES implementation , 1994 .

[14]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[15]  H. Rutishauser Theory of Gradient Methods , 1959 .

[16]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[17]  Chao Yang,et al.  A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems , 2015, SIAM J. Sci. Comput..

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .

[20]  John Rossi,et al.  Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..

[21]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[22]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[23]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[24]  C. Lanczos Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.

[25]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[26]  Tosio Kato Perturbation theory for linear operators , 1966 .

[27]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[28]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[29]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[30]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems , 1998, IRREGULAR.

[31]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[32]  Gérard Meurant,et al.  Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES , 2012, SIAM J. Matrix Anal. Appl..

[33]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[34]  Mark Embree,et al.  The Arnoldi Eigenvalue Iteration with Exact Shifts Can Fail , 2009, SIAM J. Matrix Anal. Appl..

[35]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..