Development of a machine learning potential for graphene

© 2018 American Physical Society. We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data - and amongst the empirical potentials themselves - the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].

[1]  Dario Alfè,et al.  Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance. , 2011, Physical review letters.

[2]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[3]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[4]  M. Krisch,et al.  Phonon dispersion of graphite by inelastic x-ray scattering , 2007, 0705.2418.

[5]  D. A. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010 .

[6]  Ying Ying Wang,et al.  Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. , 2008, ACS nano.

[7]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[8]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Baowen Li,et al.  Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach , 2009, 0909.1917.

[10]  F. Calvo,et al.  Thermal expansion of free-standing graphene: benchmarking semi-empirical potentials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[12]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[13]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[14]  Jannik C. Meyer,et al.  Buckyball sandwiches , 2017, Science Advances.

[15]  Nicola Marzari,et al.  Phonon anharmonicities in graphite and graphene. , 2007, Physical review letters.

[16]  Li Li,et al.  Understanding Machine-learned Density Functionals , 2014, ArXiv.

[17]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[18]  G. Seifert,et al.  Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme , 1996 .

[19]  M. Rupp,et al.  Machine learning of molecular electronic properties in chemical compound space , 2013, 1305.7074.

[20]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[21]  Matthias Rupp,et al.  Machine learning for quantum mechanics in a nutshell , 2015 .

[22]  J. Los,et al.  Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization , 2003 .

[23]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[24]  M I Katsnelson,et al.  Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. , 2008, Physical review letters.

[25]  Vibhor Singh,et al.  CORRIGENDUM: Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators , 2010 .

[26]  C. Herrero,et al.  Vibrational properties and diffusion of hydrogen on graphene , 2009, 0907.2366.

[27]  O. Anatole von Lilienfeld,et al.  Modeling electronic quantum transport with machine learning , 2014, 1401.8277.

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  A. V. van Duin,et al.  Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene. , 2015, The journal of physical chemistry. A.

[30]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[31]  J. Klimeš,et al.  Improved description of soft layered materials with van der Waals density functional theory , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Gisbert Schneider,et al.  Machine Learning Estimates of Natural Product Conformational Energies , 2014, PLoS Comput. Biol..

[33]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[34]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[35]  Vibhor Singh,et al.  Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators , 2010, Nanotechnology.

[36]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[37]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[38]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[39]  Volker L. Deringer,et al.  Extracting Crystal Chemistry from Amorphous Carbon Structures , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[41]  Rustam Z. Khaliullin,et al.  Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface , 2010 .

[42]  Fast diffusion of water nanodroplets on graphene. , 2016, Nature materials.

[43]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[44]  Hyeonsik Cheong,et al.  Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. , 2011, Nano letters.

[45]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[48]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[49]  M. Rupp,et al.  Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties , 2013, 1307.2918.

[50]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[51]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[52]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[53]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[54]  K. Müller,et al.  Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space , 2015, The journal of physical chemistry letters.

[55]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[56]  Martin H. Müser,et al.  Practical Green’s function approach to the simulation of elastic semi-infinite solids , 2006 .

[57]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[58]  J. Behler Perspective: Machine learning potentials for atomistic simulations. , 2016, The Journal of chemical physics.

[59]  Michele Parrinello,et al.  Nucleation mechanism for the direct graphite-to-diamond phase transition. , 2011, Nature materials.

[60]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[61]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[62]  Volker L. Deringer,et al.  Machine learning based interatomic potential for amorphous carbon , 2016, 1611.03277.

[63]  M. Rupp,et al.  Machine Learning for Quantum Mechanical Properties of Atoms in Molecules , 2015, 1505.00350.

[64]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[65]  V. Varshney,et al.  Modeling of thermal transport in pillared-graphene architectures. , 2010, ACS nano.

[66]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[67]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[68]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[69]  F. Calvo,et al.  Interplay between Raman shift and thermal expansion in graphene: temperature-dependent measurements and analysis of substrate corrections , 2014, 1411.7840.

[70]  M. Robbins,et al.  AIREBO-M: a reactive model for hydrocarbons at extreme pressures. , 2015, The Journal of chemical physics.

[71]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[72]  Vera Kurková,et al.  Kolmogorov's theorem and multilayer neural networks , 1992, Neural Networks.

[73]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[74]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[75]  A. Michaelides,et al.  The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity. , 2015, Journal of the American Chemical Society.

[76]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[77]  L. Ghiringhelli,et al.  Improved long-range reactive bond-order potential for carbon. II. Molecular simulation of liquid carbon , 2005 .

[78]  Jia-An Yan,et al.  Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory , 2008, 0901.3093.

[79]  Li Li,et al.  Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals , 2015, ArXiv.

[80]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[81]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[82]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[83]  C. Herrero,et al.  Quantum effects in graphene monolayers: Path-integral simulations. , 2016, The Journal of chemical physics.

[84]  Jörg Behler,et al.  Constructing high‐dimensional neural network potentials: A tutorial review , 2015 .

[85]  L. Ghiringhelli,et al.  Erratum: Improved long-range reactive bond-order potential for carbon. I. Construction [Phys. Rev. B72, 214102 (2005)] , 2006 .

[86]  Á. Rodríguez-Prieto,et al.  First-principles simulations of lithium melting: stability of the bcc phase close to melting. , 2010, Physical review letters.