Hilbert Transform Pairs of Tight Frame Wavelets with Integer Dilation Factor

[1]  Chun Zhao,et al.  Four-Channel Tight Wavelet Frames Design Using Bernstein Polynomial , 2012, Circuits, Systems, and Signal Processing.

[2]  A. Farras Abdelnour,et al.  Symmetric tight frame wavelets with dilation factor M=4 , 2011, Signal Process..

[3]  Runyi Yu,et al.  Theory of Dual-Tree Complex Wavelets , 2008, IEEE Transactions on Signal Processing.

[4]  Caroline Chaux,et al.  2D Dual-Tree Complex Biorthogonal M-Band Wavelet Transform , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[5]  Yongdong Huang,et al.  Minimum-energy frames associated with refinable function of arbitrary integer dilation factor , 2007 .

[6]  Caroline Chaux,et al.  Image analysis using a dual-tree M-band wavelet transform , 2006, IEEE Transactions on Image Processing.

[7]  Hüseyin Özkaramanli,et al.  Hilbert transform pairs of biorthogonal wavelet bases , 2006, IEEE Transactions on Signal Processing.

[8]  Richard Baraniuk,et al.  The dual-tree complex wavelet transform , 2005, IEEE Signal Processing Magazine.

[9]  H. Ozkaramanli,et al.  Hilbert transform pairs of orthogonal wavelet bases: necessary and sufficient conditions , 2005, IEEE Transactions on Signal Processing.

[10]  I. Selesnick,et al.  Symmetric wavelet tight frames with two generators , 2004 .

[11]  Alexander Petukhov,et al.  Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor , 2004 .

[12]  Caroline Chaux,et al.  Hilbert pairs of M-band orthonormal wavelet bases , 2004, 2004 12th European Signal Processing Conference.

[13]  Zheng-Xing Cheng,et al.  The construction of M-band tight wavelet frames , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[14]  Hüseyin Özkaramanli,et al.  On the phase condition and its solution for Hilbert transform pairs of wavelet bases , 2003, IEEE Trans. Signal Process..

[15]  C. Sidney Burrus,et al.  A new framework for complex wavelet transforms , 2003, IEEE Trans. Signal Process..

[16]  Ivan W. Selesnick,et al.  The design of approximate Hilbert transform pairs of wavelet bases , 2002, IEEE Trans. Signal Process..

[17]  I. Selesnick Hilbert transform pairs of wavelet bases , 2001, IEEE Signal Processing Letters.

[18]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[20]  Nick Kingsbury,et al.  The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters , 1998 .

[21]  Nick G. Kingsbury,et al.  The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[22]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[23]  A. Farras Abdelnour Dual-Tree Tight Frame Wavelets with Symmetric Envelope , 2008, 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications.

[24]  B. Han,et al.  COMPACTLY SUPPORTED ORTHONORMAL COMPLEX WAVELETS WITH DILATION 4 AND SYMMETRY , 2008 .

[25]  Ivan W. Selesnick,et al.  Symmetric nearly shift-invariant tight frame wavelets , 2005, IEEE Transactions on Signal Processing.

[26]  Petukhov,et al.  Constructive Approximation Symmetric Framelets , 2003 .

[27]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[28]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[29]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .