Distributed Design for Decentralized Control Using Chordal Decomposition and ADMM

We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on the chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbors, without needing central computation. Numerical experiments demonstrate the effectiveness of the proposed method.

[1]  Maryam Kamgarpour,et al.  Scalable analysis of linear networked systems via chordal decomposition , 2018, 2018 European Control Conference (ECC).

[2]  Yang Zheng,et al.  A chordal decomposition approach to scalable design of structured feedback gains over directed graphs , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[3]  Mihailo R. Jovanovic,et al.  Controller architectures: Tradeoffs between performance and structure , 2016, Eur. J. Control.

[4]  Michael Chertkov,et al.  Sparsity-Promoting Optimal Wide-Area Control of Power Networks , 2013, IEEE Transactions on Power Systems.

[5]  Aleksandar Haber,et al.  Sparse solution of the Lyapunov equation for large-scale interconnected systems , 2014, Autom..

[6]  James Lam,et al.  Output feedback negative imaginary synthesis under structural constraints , 2016, Autom..

[7]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[8]  Ching-tai Lin Structural controllability , 1974 .

[9]  Michael Ulbrich,et al.  Distributed Stability Tests for Large-Scale Systems With Limited Model Information , 2015, IEEE Transactions on Control of Network Systems.

[10]  Pablo A. Parrilo,et al.  ℋ2-optimal decentralized control over posets: A state space solution for state-feedback , 2010, 49th IEEE Conference on Decision and Control (CDC).

[11]  Alborz Alavian,et al.  Stabilizing decentralized systems with arbitrary information structure , 2014, 53rd IEEE Conference on Decision and Control.

[12]  E. Davison,et al.  Decentralized stabilization and pole assignment for general proper systems , 1990 .

[13]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[14]  A. Papachristodoulou,et al.  Convex Design of Structured Controllers using Block-Diagonal Lyapunov Functions , 2017, 1709.00695.

[15]  Mohammad Aldeen,et al.  Stabilization of decentralized control systems , 1997 .

[16]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[17]  Jan Lunze,et al.  Feedback control of large-scale systems , 1992 .

[18]  Anders Rantzer,et al.  Robust Stability Analysis of Sparsely Interconnected Uncertain Systems , 2013, IEEE Transactions on Automatic Control.

[19]  Pablo A. Parrilo,et al.  $ {\cal H}_{2}$-Optimal Decentralized Control Over Posets: A State-Space Solution for State-Feedback , 2010, IEEE Transactions on Automatic Control.

[20]  Maryam Kamgarpour,et al.  Unified Approach to Convex Robust Distributed Control Given Arbitrary Information Structures , 2017, IEEE Transactions on Automatic Control.

[21]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[22]  Joachim Dahl,et al.  Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones , 2010, Math. Program. Comput..

[23]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[24]  Aivar Sootla,et al.  On existence of solutions to structured lyapunov inequalities , 2016, 2016 American Control Conference (ACC).

[25]  Dragoslav D. Siljak,et al.  Design of robust static output feedback for large-scale systems , 2004, IEEE Transactions on Automatic Control.

[26]  Eduardo D. Sontag,et al.  Diagonal stability of a class of cyclic systems and its connection with the secant criterion , 2006, Autom..

[27]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[28]  Yang Zheng,et al.  Scalable Design of Structured Controllers Using Chordal Decomposition , 2018, IEEE Transactions on Automatic Control.

[29]  Antonis Papachristodoulou,et al.  Chordal sparsity, decomposing SDPs and the Lyapunov equation , 2014, 2014 American Control Conference.

[30]  Karl Henrik Johansson,et al.  Optimal structured static state-feedback control design with limited model information for fully-actuated systems , 2011, Autom..

[31]  Antonis Papachristodoulou,et al.  Layered decomposition for the model order reduction of timescale separated biochemical reaction networks. , 2014, Journal of theoretical biology.

[32]  L. Silverman,et al.  Characterization of structural controllability , 1976 .

[33]  Dragoslav D. Siljak,et al.  Control design with arbitrary information structure constraints , 2008, Autom..

[34]  Anders Rantzer,et al.  A scalable method for continuous-time distributed control synthesis , 2012, 2012 American Control Conference (ACC).

[35]  Andreas Griewank,et al.  On the existence of convex decompositions of partially separable functions , 1984, Math. Program..

[36]  Nikolai Matni,et al.  Separable and Localized System-Level Synthesis for Large-Scale Systems , 2017, IEEE Transactions on Automatic Control.

[37]  Bassam Bamieh,et al.  Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback , 2011, IEEE Transactions on Automatic Control.

[38]  Le Yi Wang,et al.  Stability Margin Improvement of Vehicular Platoon Considering Undirected Topology and Asymmetric Control , 2016, IEEE Transactions on Control Systems Technology.

[39]  Ufuk Topcu,et al.  Distributed Synthesis Using Accelerated ADMM , 2018, 2018 Annual American Control Conference (ACC).

[40]  Vijay Gupta,et al.  Minimal Interconnection Topology in Distributed Control Design , 2006, 2006 American Control Conference.

[41]  L. Rodman,et al.  Positive semidefinite matrices with a given sparsity pattern , 1988 .

[42]  Murat Arcak,et al.  Diagonal Stability on Cactus Graphs and Application to Network Stability Analysis , 2011, IEEE Transactions on Automatic Control.

[43]  Takashi Tanaka,et al.  The Bounded Real Lemma for Internally Positive Systems and H-Infinity Structured Static State Feedback , 2011, IEEE Transactions on Automatic Control.

[44]  Anders Rantzer,et al.  Scalable control of positive systems , 2012, Eur. J. Control.

[45]  Y. Ho,et al.  Team decision theory and information structures in optimal control problems--Part II , 1972 .

[46]  Javad Lavaei,et al.  Convex Relaxation for Optimal Distributed Control Problems , 2014, IEEE Transactions on Automatic Control.

[47]  Sanjay Lall,et al.  An Algebraic Approach to the Control of Decentralized Systems , 2013, IEEE Transactions on Control of Network Systems.

[48]  Jean-Charles Delvenne,et al.  Distributed Design Methods for Linear Quadratic Control and Their Limitations , 2010, IEEE Transactions on Automatic Control.

[49]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[50]  M. Kothare,et al.  Optimal Sparse Output Feedback Control Design: a Rank Constrained Optimization Approach , 2014, 1412.8236.

[51]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[52]  Antonis Papachristodoulou,et al.  A Decomposition Technique for Nonlinear Dynamical System Analysis , 2012, IEEE Transactions on Automatic Control.

[53]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[54]  Jianqiang Wang,et al.  An overview of vehicular platoon control under the four-component framework , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[55]  Yang Zheng,et al.  Block-diagonal solutions to Lyapunov inequalities and generalisations of diagonal dominance , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[56]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[57]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[58]  Pedro Luis Dias Peres,et al.  Decentralized control through parameter space optimization , 1994, Autom..

[59]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[60]  Fu Lin,et al.  Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains , 2011, IEEE Transactions on Automatic Control.

[61]  D. Carlson,et al.  Block diagonal semistability factors and Lyapunov semistability of block triangular matrices , 1992 .

[62]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[63]  Ekkehard W. Sachs,et al.  Computational Design of Optimal Output Feedback Controllers , 1997, SIAM J. Optim..