Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella

Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.

[1]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[2]  Geoffrey A Ozin,et al.  Nanolocomotion - catalytic nanomotors and nanorotors. , 2010, Small.

[3]  Christopher E. Brennen,et al.  Fluid Mechanics of Propulsion by Cilia and Flagella , 1977 .

[4]  Metin Sitti,et al.  Remotely addressable magnetic composite micropumps , 2012 .

[5]  M. R. Edwards,et al.  Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads , 2013 .

[6]  M. Sitti,et al.  Multiple magnetic microrobot control using electrostatic anchoring , 2009 .

[7]  G. J. HANCOCKf,et al.  THE PROPULSION OF SEA-URCHIN SPERMATOZOA , 2005 .

[8]  Jun Hee Lee,et al.  Fabrication and magnetic control of bacteria-inspired robotic microswimmers , 2010 .

[9]  Min Jun Kim,et al.  Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling , 2004 .

[10]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[11]  Brian A. Korgel,et al.  Nanosprings Take Shape , 2005, Science.

[12]  Joseph Wang,et al.  High-speed propulsion of flexible nanowire motors: Theory and experiments , 2011, 1109.1631.

[13]  Rémy Braive,et al.  Electro-osmotic propulsion of helical nanobelt swimmers , 2011, Int. J. Robotics Res..

[14]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[15]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[16]  M. Sitti,et al.  Chemotactic steering of bacteria propelled microbeads , 2012, Biomedical Microdevices.

[17]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[18]  E. Purcell The efficiency of propulsion by a rotating flagellum. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[20]  Tony S. Yu,et al.  Experimental Investigations of Elastic Tail Propulsion At Low Reynolds Number , 2006, cond-mat/0606527.

[21]  D. Gracias,et al.  Surface tension-driven self-folding polyhedra. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  Metin Sitti,et al.  Micro-scale propulsion using multiple flexible artificial flagella , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[24]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[25]  Gunhee Jang,et al.  Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels , 2012 .

[26]  国際非電離放射線防護委員会 ICNIRP statement on the "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)". , 2009, Health physics.

[27]  Metin Sitti,et al.  Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads , 2008 .

[28]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[29]  K. Kang,et al.  Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. , 2010, ACS nano.

[30]  R. Netz,et al.  Propulsion with a rotating elastic nanorod. , 2006, Physical review letters.

[31]  Metin Sitti,et al.  Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Metin Sitti,et al.  Control methodologies for a heterogeneous group of untethered magnetic micro-robots , 2011, Int. J. Robotics Res..

[33]  G. Whitesides,et al.  Propulsion of flexible polymer structures in a rotating magnetic field , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009, ISRR.

[35]  H. Berg Random Walks in Biology , 2018 .

[36]  Metin Sitti,et al.  Biomimetic propulsion for a swimming surgical micro-robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[37]  Hongyuan Jiang,et al.  Minimal model for synchronization induced by hydrodynamic interactions. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Paolo Dario,et al.  Design and development of a soft magnetically-propelled swimming microrobot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[39]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[40]  Metin Sitti,et al.  Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators , 2012 .

[41]  Marco Hutter,et al.  Modeling assembled-MEMS microrobots for wireless magnetic control , 2008, 2008 IEEE International Conference on Robotics and Automation.

[42]  B. Kirby Micro- and nanoscale fluid mechanics : transport in microfluidic devices , 2010 .

[43]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[44]  Metin Sitti,et al.  Independent control of multiple magnetic microrobots in three dimensions , 2013, Int. J. Robotics Res..

[45]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[46]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.

[47]  Metin Sitti,et al.  Miniature devices: Voyage of the microrobots , 2009, Nature.

[48]  T. J. Ui,et al.  Stokes drag on a cylinder in axial motion , 1984 .

[49]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[50]  Raymond E. Goldstein,et al.  FLEXIVE AND PROPULSIVE DYNAMICS OF ELASTICA AT LOW REYNOLDS NUMBER , 1997, cond-mat/9707346.

[51]  K. Breuer,et al.  Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. , 2007, Physical review letters.

[52]  Metin Sitti,et al.  Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots , 2004 .

[53]  E. Lauga,et al.  The optimal elastic flagellum , 2009, 0909.4826.

[54]  Metin Sitti,et al.  Modeling of stochastic motion of bacteria propelled spherical microbeads , 2011 .

[55]  D. Weihs,et al.  Magnetically powered flexible metal nanowire motors. , 2010, Journal of the American Chemical Society.

[56]  Li Zhang,et al.  Artificial bacterial flagella for micromanipulation. , 2010, Lab on a chip.

[57]  Koji Ikuta,et al.  Magnetic micro actuator with neutral buoyancy and 3D fabrication of cell size magnetized structure , 2012, 2012 IEEE International Conference on Robotics and Automation.

[58]  Denis Bartolo,et al.  Rotational dynamics of a soft filament: Wrapping transition and propulsive forces , 2008, 0802.1503.

[59]  Joseph Wang,et al.  Can man-made nanomachines compete with nature biomotors? , 2009, ACS nano.