Accurate Determination of the Neutron Skin Thickness of ^{208}Pb through Parity-Violation in Electron Scattering.
暂无分享,去创建一个
J. Napolitano | C. Clarke | B. Quinn | C. Horowitz | M. Thiel | G. Leverick | M. Thiel | G. Urciuoli | C. Clarke | M. Mondal | S. Malace | D. Gaskell | C. Keppel | A. Narayan | H. Bhatt | V. Bellini | K. Kumar | D. Jones | S. Johnston | P. Souder | C. Feldman | H. Liu | D. King | Y. Tian | C. Palatchi | D. McNulty | S. Jian | C. Gal | R. Michaels | M. Mondal | A. Deshpande | D. Dutta | J. Pan | P. Reimer | A. Shahinyan | A. Zec | P. Datta | K. Paschke | S. Barcus | A. Camsonne | S. Dusa | E. Fuchey | T. Gautam | J. Hansen | F. Hauenstein | D. Meekins | B. Pandey | A. Puckett | L. Tang | B. Wojtsekhowski | K. Aniol | T. Averett | Y. Roblin | L. Tang | J. Zhang | C. A. Gayoso | B. Reed | W. Zhang | Y. Chen | D. Androić | D. Armstrong | R. Beminiwattha | J. Benesch | G. Cates | J. Cornejo | M. Gericke | P. King | J. Mammei | M. Pitt | E. W. Wertz | B. Karki | S. Riordan | B. Yale | P. Datta | S. Covrig Dusa | T. Kutz | M. Rashad | R. Mammei | Y. Tian | S. Park | Binod Karki | W. Zhang | D. Bhetuwal | N. Lashley-Colthirst | H. Albataineh | Q. Campagna | S. Jian | V. Owen | S. Premathilake | W. Henry | X. Zheng | D. Adhikari | D. Pathak | B. Blaikie | C. Ghosh | I. Halilovic | C. Jantzi | S. Katugampola | C. Metts | J. Napolitano | D. Nikolaev | M. Petrusky | R. Radloff | S. Rahman | A. Rathnayake | R. Richards | S. Seeds | T. Ye | A. Yoon | M. Knauss | D. Bhatta Pathak | M. Knauss | N. Liyange | D. Androic | M. McCaughan | J. Pan | S. Park | T. Ye | C. Ayerbe Gayoso | S. Seeds | X. Zheng | D. Jones | X. Zheng | C. Gayoso | D. Mcnulty | J. Hansen | G. Leverick
[1] C. Horowitz,et al. Insights into nuclear saturation density from parity-violating electron scattering , 2020 .
[2] C. Horowitz,et al. Measuring the surface thickness of the weak charge density of nuclei , 2020, 2009.06664.
[3] S. Novario,et al. Charge radii of exotic neon and magnesium isotopes , 2020, 2007.06684.
[4] C. Horowitz,et al. GW190814: Impact of a 2.6 solar mass neutron star on nucleonic equations of state , 2020, 2007.03799.
[5] K. Chatziioannou. Neutron-star tidal deformability and equation-of-state constraints , 2020, General Relativity and Gravitation.
[6] J. Melendez,et al. How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties. , 2020, Physical review letters.
[7] Min Liu,et al. Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars , 2020, Physical Review C.
[8] L. Fabbietti,et al. Strangeness in nuclei and neutron stars , 2020, Progress in Particle and Nuclear Physics.
[9] G. Burgio,et al. Are nuclear matter properties correlated to neutron star observables? , 2020, The European Physical Journal A.
[10] E. Khan,et al. Multimessenger and multiphysics Bayesian inference for the GW170817 binary neutron star merger , 2020, 2001.10259.
[11] K. Sumiyoshi,et al. Effects of Symmetry Energy on the Equation of State for Simulations of Core-collapse Supernovae and Neutron-star Mergers , 2020, The Astrophysical Journal.
[12] C. Providencia,et al. Relativistic hypernuclear compact stars with calibrated equations of state , 2020, Physical Review D.
[13] Keith C. Gendreau,et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation , 2019, The Astrophysical Journal.
[14] C. Horowitz. Neutron rich matter in the laboratory and in the heavens after GW170817 , 2019, Annals of Physics.
[15] Lie-Wen Chen,et al. Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions. , 2019, Physical review letters.
[16] J. Piekarewicz,et al. Electroweak probes of ground state densities , 2019, Physical Review C.
[17] G. Burgio,et al. Are nuclear matter properties correlated to neutron star observables? , 2019, The European Physical Journal A.
[18] L. Baiotti. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state , 2019, Progress in Particle and Nuclear Physics.
[19] J. Piekarewicz,et al. Neutron-rich matter in heaven and on Earth , 2019, Physics Today.
[20] C. Tsang,et al. Symmetry energy constraints from GW170817 and laboratory experiments , 2019, Physics Letters B.
[21] C. Horowitz,et al. Neutron skins of atomic nuclei: per aspera ad astra , 2019, Journal of Physics G: Nuclear and Particle Physics.
[22] V. Ferrari,et al. Constraining the Neutron Star Equation of State Using Multiband Independent Measurements of Radii and Tidal Deformabilities. , 2019, Physical review letters.
[23] K. Aulenbacher,et al. Precision electron beam polarimetry for next generation nuclear physics experiments , 2018, International Journal of Modern Physics E.
[24] Nicolas Produit,et al. The P2 experiment , 2018, The European Physical Journal A.
[25] S. Klein,et al. Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.
[26] E. Chicken,et al. Power of two: Assessing the impact of a second measurement of the weak-charge form factor of $^{208}$Pb , 2016, 1604.07799.
[27] V. Tioukine,et al. The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using M{\o}ller Scattering , 2014, 1411.4088.
[28] Nuruzzaman,et al. The Q(weak) experimental apparatus , 2014, 1409.7100.
[29] J. Piekarewicz,et al. Has a thick neutron skin in 208Pb been ruled out? , 2013, Physical review letters.
[30] J. Erler,et al. The Weak Neutral Current , 2013, 1303.5522.
[31] Nicolas Produit,et al. Weak charge form factor and radius of 208Pb through parity violation in electron scattering , 2012, 1202.1468.
[32] Nicolas Produit,et al. Measurement of the Neutron Radius of 208Pb Through Parity Violation in Electron Scattering , 2012, 1201.2568.
[33] C. Horowitz,et al. Model dependence of the γZ dispersion correction to the parity-violating asymmetry in elastic ep scattering , 2011, 1102.3910.
[34] C. Horowitz,et al. Relativistic effective interaction for nuclei, giant resonances, and neutron stars , 2010, 1008.3030.
[35] C. Horowitz,et al. Dispersion gammaZ-box correction to the weak charge of the proton. , 2008, Physical review letters.
[36] P. Hartmann,et al. Development of a high average current polarized electron source with long cathode operational lifetime , 2007 .
[37] J. Piekarewicz,et al. Neutron-rich nuclei and neutron stars: a new accurately calibrated interaction for the study of neutron-rich matter. , 2005, Physical review letters.
[38] D. Kim,et al. Parity violating electroweak asymmetry in polarized-e p scattering , 2004 .
[39] C. Horowitz. Parity Violating Measurements of Neutron Densities and Nuclear Structure , 2000, nucl-th/0010010.
[40] C. Horowitz. Parity violating elastic electron scattering and Coulomb distortions , 1998, nucl-th/9801011.
[41] R. Schaeffer,et al. A Skyrme parametrization from subnuclear to neutron star densities , 1997 .
[42] D. Sprung,et al. The symmetrized Fermi function and its transforms , 1997 .
[43] P. Ring,et al. New parametrization for the Lagrangian density of relativistic mean field theory , 1996, nucl-th/9607039.
[44] I. Sick,et al. Isospin dependences in parity-violating electron scattering , 1989 .
[45] C. Papanicolas,et al. Electron scattering and nuclear structure , 1987 .
[46] C. Vries,et al. Nuclear charge-density-distribution parameters from elastic electron scattering , 1987 .
[47] P. Quentin,et al. Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description , 1975 .
[48] J. Walecka. ELECTRON SCATTERING AND NUCLEAR STRUCTURE. , 1968 .
[49] A. Hewish,et al. Observation of a Rapidly Pulsating Radio Source , 1968, Nature.
[50] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[51] P. K. Panda,et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object , 2020 .
[52] P. Markowitz,et al. Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range , 2009 .
[53] Nicolas Produit,et al. Basic instrumentation for Hall A at Jefferson Lab , 2004, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.