The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle

[1]  T. Yoshino,et al.  Electrical conductivity of wadsleyite as a function of temperature and water content , 2009 .

[2]  T. Yoshino,et al.  Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite , 2008, Nature.

[3]  U. Golla‐Schindler,et al.  Metal saturation in the upper mantle , 2007, Nature.

[4]  B. Wood,et al.  The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine: Implications for water solubility in the upper mantle , 2007 .

[5]  S. Ghosh,et al.  Temperature dependence and mechanism of hydrogen incorporation in olivine at 12.5–14.0 GPa , 2007 .

[6]  H. Utada,et al.  1-D electrical conductivity structure beneath the Philippine Sea: Results from an ocean bottom magnetotelluric survey , 2007 .

[7]  T. Yoshino,et al.  Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere , 2006, Nature.

[8]  D. Frost,et al.  Olivine hydration in the deep upper mantle: Effects of temperature and silica activity , 2006 .

[9]  S. Constable FAST TRACK PAPER: SEO3: A new model of olivine electrical conductivity , 2006 .

[10]  S. Karato,et al.  The effect of water on the electrical conductivity of olivine , 2005, Nature.

[11]  D. Forsyth,et al.  Geophysical evidence from the MELT area for compositional controls on oceanic plates , 2005, Nature.

[12]  M. Hirschmann,et al.  Storage capacity of H2O in nominally anhydrous minerals in the upper mantle , 2005 .

[13]  C. McCammon The Paradox of Mantle Redox , 2005, Science.

[14]  S. Karato,et al.  Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite , 2005, Nature.

[15]  H. Utada,et al.  3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited , 2005 .

[16]  H. Spetzler,et al.  Sound velocities and elastic constants of iron-bearing hydrous ringwoodite , 2004 .

[17]  S. Hautot,et al.  Water in the mantle: Results from electrical conductivity beneath the French Alps , 2004 .

[18]  T. Yoshino,et al.  Olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 , 2004 .

[19]  C. Fowler The Solid Earth: The continental lithosphere , 2004 .

[20]  Alan G. Jones,et al.  The electrical structure of the Slave craton , 2003 .

[21]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[22]  G. Rossman,et al.  Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum , 2003 .

[23]  J. Roberts Electrical properties of microporous rock as a function of saturation and temperature , 2002 .

[24]  Masayuki Obayashi,et al.  Stagnant slabs in the upper and lower mantle transition region , 2001 .

[25]  A. Chave,et al.  Comparison of continental and oceanic mantle electrical conductivity: Is the Archean lithosphere dry? , 2000 .

[26]  N. Bolfan-Casanova Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle , 2000 .

[27]  D. Kohlstedt,et al.  Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime , 2000 .

[28]  A. Schultz,et al.  Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean , 2000 .

[29]  A. Duba,et al.  Pressure effect on electrical conductivity of mantle olivine , 2000 .

[30]  T. Jordan,et al.  Seismological structure of the upper mantle: a regional comparison of seismic layering , 1999 .

[31]  Xu,et al.  Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions , 1998, Science.

[32]  N. Olsen The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr , 1998 .

[33]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[34]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[35]  H. Keppler,et al.  Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 , 1996 .

[36]  A. Schultz,et al.  Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data , 1995 .

[37]  A. Schultz,et al.  Conductivity discontinuities in the upper mantle beneath a stable craton , 1993 .

[38]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[39]  S. Constable,et al.  The electrical conductivity of an isotropic olivine mantle , 1992 .

[40]  S. Karato,et al.  The role of hydrogen in the electrical conductivity of the upper mantle , 1990, Nature.

[41]  D. Kohlstedt,et al.  Diffusion of hydrogen in olivine: Implications for water in the mantle , 1990 .

[42]  R. Schock,et al.  Electrical conduction in olivine , 1989 .

[43]  T. Jordan Structure and Formation of the Continental Tectosphere , 1988 .

[44]  J. Smyth beta -Mg 2 SiO 4 ; a potential host for water in the mantle? , 1987 .

[45]  M. Paterson,et al.  Rheology of synthetic olivine aggregates: Influence of grain size and water , 1986 .

[46]  M. S. Paterson,et al.  The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials , 1982 .

[47]  H. Waff Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry , 1974 .

[48]  G. Iyengar,et al.  A study of semiconduction in dilute magnesio-Wüstites , 1970 .

[49]  F. A. Kröger,et al.  Relations between the Concentrations of Imperfections in Crystalline Solids , 1956 .

[50]  E. Conwell,et al.  Electrical Properties of N -Type Germanium , 1954 .