Robust Median Reversion Strategy for Online Portfolio Selection

Online portfolio selection has attracted increasing attention from data mining and machine learning communities in recent years. An important theory in financial markets is mean reversion, which plays a critical role in some state-of-the-art portfolio selection strategies. Although existing mean reversion strategies have been shown to achieve good empirical performance on certain datasets, they seldom carefully deal with noise and outliers in the data, leading to suboptimal portfolios, and consequently yielding poor performance in practice. In this paper, we propose to exploit the reversion phenomenon by using robust <inline-formula><tex-math notation="LaTeX"> $L_1$</tex-math><alternatives><inline-graphic xlink:type="simple" xlink:href="huang-ieq1-2563433.gif"/></alternatives> </inline-formula>-median estimators, and design a novel online portfolio selection strategy named “Robust Median Reversion” (RMR), which constructs optimal portfolios based on the improved reversion estimator. We examine the performance of the proposed algorithms on various real markets with extensive experiments. Empirical results show that RMR can overcome the drawbacks of existing mean reversion algorithms and achieve significantly better results. Finally, RMR runs in linear time, and thus is suitable for large-scale real-time algorithmic trading applications.

[1]  Bin Li,et al.  Moving average reversion strategy for on-line portfolio selection , 2015, Artif. Intell..

[2]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[3]  T. Cover Universal Portfolios , 1996 .

[4]  László Györfi,et al.  Nonparametric nearest neighbor based empirical portfolio selection strategies , 2008 .

[5]  László Györfi,et al.  Machine Learning for Financial Engineering (Advances in Computer Science and Engineering: Texts) , 2011 .

[6]  Steven C. H. Hoi,et al.  PAMR: Passive aggressive mean reversion strategy for portfolio selection , 2012, Machine Learning.

[7]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[8]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[9]  W. Sharpe The Sharpe Ratio , 1994 .

[10]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[11]  Erik Ordentlich,et al.  On-line portfolio selection , 1996, COLT '96.

[12]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[13]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[14]  Bin Li,et al.  CORN: Correlation-driven nonparametric learning approach for portfolio selection , 2011, TIST.

[15]  Bin Li,et al.  Confidence Weighted Mean Reversion Strategy for Online Portfolio Selection , 2011, TKDD.

[16]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[17]  Gilbert Laporte,et al.  Annals of Operations Research , 1996 .

[18]  Arindam Banerjee,et al.  Online Lazy Updates for Portfolio Selection with Transaction Costs , 2013, AAAI.

[19]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[21]  W. Sharpe A Simplified Model for Portfolio Analysis , 1963 .

[23]  Bin Li,et al.  Semi-Universal Portfolios with Transaction Costs , 2015, IJCAI.

[24]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  E. Thorp Portfolio Choice and the Kelly Criterion , 1975 .

[27]  Irene Aldridge,et al.  High-frequency Trading High-frequency Trading Industry Strategy Project Engineering Leadership Program , 2022 .

[28]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[29]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[30]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[31]  A. Singer,et al.  UNIVERSAL SEMICONSTANT REBALANCED PORTFOLIOS , 2010 .

[32]  Narasimhan Jegadeesh,et al.  Evidence of Predictable Behavior of Security Returns , 1990 .

[33]  Arindam Banerjee,et al.  Online Portfolio Selection with Group Sparsity , 2014, AAAI.

[34]  Bin Li,et al.  On-Line Portfolio Selection with Moving Average Reversion , 2012, ICML.

[35]  R. Grinold,et al.  Active portfolio management : a quantitative approach for providing superior returns and controlling risk , 2000 .

[36]  Allan Borodin,et al.  Can We Learn to Beat the Best Stock , 2003, NIPS.

[37]  C. Small A Survey of Multidimensional Medians , 1990 .

[38]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[39]  C H HoiSteven,et al.  Online portfolio selection , 2014 .

[40]  Steven C. H. Hoi,et al.  Online Portfolio Selection , 2015 .

[41]  Arindam Banerjee,et al.  Meta optimization and its application to portfolio selection , 2011, KDD.

[42]  Yoram Singer,et al.  On‐Line Portfolio Selection Using Multiplicative Updates , 1998, ICML.

[43]  Tanja Neumann Mean Variance Analysis In Portfolio Choice And Capital Markets , 2016 .

[44]  Fabio Stella,et al.  Stochastic Nonstationary Optimization for Finding Universal Portfolios , 2000, Ann. Oper. Res..

[45]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[46]  László Györfi,et al.  Growth Optimal Investment with Transaction Costs , 2008, ALT.

[47]  Santosh S. Vempala,et al.  Efficient algorithms for universal portfolios , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[48]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[49]  G. Lugosi,et al.  NONPARAMETRIC KERNEL‐BASED SEQUENTIAL INVESTMENT STRATEGIES , 2006 .

[50]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[51]  Robert E. Schapire,et al.  Algorithms for portfolio management based on the Newton method , 2006, ICML.

[52]  Adam Tauman Kalai,et al.  Universal Portfolios With and Without Transaction Costs , 1997, COLT '97.