Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?

Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.

[1]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[2]  Michael L. Roukes,et al.  Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution , 2006 .

[3]  Mathias Gautel,et al.  The elasticity of single titin molecules using a two-bead optical tweezers assay. , 2004, Biophysical journal.

[4]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[5]  Subra Suresh,et al.  A microfabricated deformability-based flow cytometer with application to malaria. , 2011, Lab on a chip.

[6]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[7]  J. Zlatanova,et al.  Single molecule force spectroscopy in biology using the atomic force microscope. , 2000, Progress in biophysics and molecular biology.

[8]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[9]  Carlos Bustamante,et al.  Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner , 2007, Nature.

[10]  Delayed dissociation of in vitro moving actin filaments from heavy meromyosin induced by low concentrations of Triton X-100. , 1997, Biophysical chemistry.

[11]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[12]  D. Anselmetti,et al.  Binding strength between cell adhesion proteoglycans measured by atomic force microscopy , 1995, Science.

[13]  Daniel J. Muller,et al.  High-resolution atomic force microscopy and spectroscopy of native membrane proteins , 2011 .

[14]  Peter T C So,et al.  Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. , 2002, Biophysical journal.

[15]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[16]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[17]  E. Sackmann,et al.  Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. , 1999, Biophysical journal.

[18]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[19]  Steven M. Block,et al.  Sequence-Resolved Detection of Pausing by Single RNA Polymerase Molecules , 2006, Cell.

[20]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[21]  Nancy R. Sottos,et al.  Biasing reaction pathways with mechanical force , 2007, Nature.

[22]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.

[23]  E. Schmelz,et al.  Erratum to "The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures" [Nanomed Nanotechnol Biol Med. 2012;8:93-102] , 2012 .

[24]  Shu Chien,et al.  Live Cells Exert 3-Dimensional Traction Forces on Their Substrata , 2009, Cellular and molecular bioengineering.

[25]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[26]  Wesley R. Legant,et al.  Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions , 2012, Proceedings of the National Academy of Sciences.

[27]  H. Gaub,et al.  Force-based analysis of multidimensional energy landscapes: application of dynamic force spectroscopy and steered molecular dynamics simulations to an antibody fragment-peptide complex. , 2008, Journal of molecular biology.

[28]  D. Marx,et al.  Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. , 2012, Chemical reviews.

[29]  Christopher S. Chen,et al.  Cells lying on a bed of microneedles: An approach to isolate mechanical force , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A S Verkman,et al.  Size-dependent DNA Mobility in Cytoplasm and Nucleus* , 2000, The Journal of Biological Chemistry.

[31]  D. Sirbuly,et al.  Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation , 2014 .

[32]  M. Rief,et al.  How strong is a covalent bond? , 1999, Science.

[33]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[34]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[35]  L. A. Wenzler,et al.  Improvements to atomic force microscopy cantilevers for increased stability , 1996 .

[36]  K. Jacobson,et al.  Traction forces in locomoting cells. , 1995, Cell motility and the cytoskeleton.

[37]  M. Hegner,et al.  Specific antigen/antibody interactions measured by force microscopy. , 1996, Biophysical journal.

[38]  Yu Sun,et al.  Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. , 2011, Lab on a chip.

[39]  Michelle D. Wang,et al.  Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. , 2011, Physical review letters.

[40]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[41]  U. Bockelmann,et al.  Mechanical separation of the complementary strands of DNA. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Kanguk Kim,et al.  Quantitative mechanical analysis of thin compressible polymer monolayers on oxide surfaces. , 2014, Soft matter.

[43]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[44]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  O. Hansen,et al.  Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement , 2000 .

[46]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[47]  A Paul Alivisatos,et al.  Luminescent nanocrystal stress gauge , 2010, Proceedings of the National Academy of Sciences.

[48]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[49]  Alexander Rohrbach,et al.  Switching and measuring a force of 25 femtoNewtons with an optical trap. , 2005, Optics express.

[50]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[51]  Michael J Biercuk,et al.  Ultrasensitive detection of force and displacement using trapped ions. , 2010, Nature nanotechnology.

[52]  A. Becker,et al.  Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti. , 2007, Biophysical journal.

[53]  R. Boulatov,et al.  A molecular force probe. , 2009, Nature nanotechnology.

[54]  David Bensimon,et al.  Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers. , 2009, Physical review letters.

[55]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[56]  Wesley R. Legant,et al.  Measurement of mechanical tractions exerted by cells in three-dimensional matrices , 2010, Nature Methods.

[57]  M. Kuimova,et al.  Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. , 2008, Journal of the American Chemical Society.

[58]  Daniel Isabey,et al.  Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers. , 2002, Journal of biomechanical engineering.

[59]  M. Rief,et al.  Characterization of the adhesion force between avidin-functionalized AFM tips and biotinylated agarose beads , 1994 .

[60]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[62]  G. Zocchi,et al.  Elasticity of globular proteins measured from the ac susceptibility. , 2010, Physical review letters.

[63]  Christian Franck,et al.  Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions , 2011, PloS one.

[64]  Rae M. Robertson,et al.  Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. , 2007, Journal of molecular biology.

[65]  Chun En Kung,et al.  Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation , 1986 .

[66]  J. Léger,et al.  Structural Transitions of a Twisted and Stretched DNA Molecule , 1999 .

[67]  A. Dittmore,et al.  Single-molecule elasticity measurements of the onset of excluded volume in poly(ethylene glycol). , 2011, Physical review letters.

[68]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[69]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[70]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[71]  Stefan Schinkinger,et al.  Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.

[72]  Nathan J. Sniadecki,et al.  Review on Cell Mechanics: Experimental and Modeling Approaches , 2013 .

[73]  S. Esener,et al.  Nanofiber near-field light-matter interactions for enhanced detection of molecular level displacements and dynamics. , 2013, Nano letters (Print).

[74]  Hendrik Dietz,et al.  Anisotropic deformation response of single protein molecules , 2006, Proceedings of the National Academy of Sciences.

[75]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[76]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[77]  Richard Lavery,et al.  Phase coexistence in a single DNA molecule , 1999 .

[78]  G. Charvin,et al.  Tracking topoisomerase activity at the single-molecule level. , 2005, Annual review of biophysics and biomolecular structure.

[79]  Bernard Yurke,et al.  A magnetic manipulator for studying local rheology and micromechanical properties of biological systems , 1996 .

[80]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[81]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[82]  W. Charemza,et al.  Conclusions and future prospects , 1989 .

[83]  Martin Depken,et al.  The origin of short transcriptional pauses. , 2009, Biophysical journal.

[84]  Alessandro Borgia,et al.  Single-molecule studies of protein folding. , 2008, Annual review of biochemistry.

[85]  M. Rief,et al.  Sequence-dependent mechanics of single DNA molecules , 1999, Nature Structural Biology.

[86]  Andrew C. Richardson,et al.  Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells , 2013, Physical biology.

[87]  N. B. Viana,et al.  Absolute calibration of optical tweezers including aberrations , 2012 .

[88]  Jeen-Shang Lin,et al.  Cell traction force and measurement methods , 2007, Biomechanics and modeling in mechanobiology.

[89]  Hermann E. Gaub,et al.  Adhesive forces between ligand and receptor measured by AFM , 1994 .

[90]  R. Boulatov,et al.  Chemomechanics: chemical kinetics for multiscale phenomena. , 2011, Chemical Society reviews.

[91]  A. Fuhrmann,et al.  Quantitative analysis of single-molecule RNA-protein interaction. , 2009, Biophysical journal.

[92]  P. Ormos,et al.  Direct measurement of torque in an optical trap and its application to double-strand DNA. , 2006, Physical review letters.

[93]  Scott Forth,et al.  Torque measurement at the single-molecule level. , 2013, Annual review of biophysics.

[94]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[95]  Daniel A Fletcher,et al.  Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. , 2008, Lab on a chip.

[96]  Matthias Rief,et al.  Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water , 1999 .

[97]  Carlos Bustamante,et al.  Grabbing the cat by the tail: manipulating molecules one by one , 2000, Nature Reviews Molecular Cell Biology.

[98]  Robert E. Buxbaum,et al.  Direct Observations of the Mechanical Behaviors of the Cytoskeleton in Living Fibroblasts , 1999, The Journal of cell biology.

[99]  A. Fuhrmann,et al.  Single-molecule force spectroscopy: a method for quantitative analysis of ligand-receptor interactions. , 2010, Nanomedicine.

[100]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[101]  Janshoff,et al.  Force Spectroscopy of Molecular Systems-Single Molecule Spectroscopy of Polymers and Biomolecules. , 2000, Angewandte Chemie.

[102]  M. Rief,et al.  Mechanical stability of single DNA molecules. , 2000, Biophysical journal.

[103]  Taekjip Ha,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[104]  Falk Wottawah,et al.  Oral cancer diagnosis by mechanical phenotyping. , 2009, Cancer research.

[105]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[107]  A. Sali,et al.  The molecular sociology of the cell , 2007, Nature.

[108]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[109]  A. Caspi,et al.  Diffusion and directed motion in cellular transport. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[111]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[112]  T. Pederson Diffusional protein transport within the nucleus: a message in the medium , 2000, Nature Cell Biology.

[113]  H. Baker,et al.  Single molecule force spectroscopy on G-quadruplex DNA. , 2009, Chemistry.

[114]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[115]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase , 2004, Nature.

[116]  Derek N. Fuller,et al.  Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability , 2007, Proceedings of the National Academy of Sciences.

[117]  N. Doltsinis,et al.  Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[118]  A. Plückthun,et al.  Antigen binding forces of individually addressed single-chain Fv antibody molecules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Magalie Faivre,et al.  High-speed microfluidic differential manometer for cellular-scale hydrodynamics. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Masasuke Yoshida,et al.  F 1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120 8 Steps , 1998 .

[121]  Erich Hoover,et al.  Cell deformation cytometry using diode-bar optical stretchers. , 2010, Journal of biomedical optics.

[122]  Vinod Subramaniam,et al.  Intracellular manipulation of chromatin using magnetic nanoparticles , 2008, Chromosome Research.

[123]  Richard Superfine,et al.  Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. , 2011, Cancer research.

[124]  Elio A. Abbondanzieri,et al.  Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking , 2003, Cell.

[125]  Z. Stachura,et al.  Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy , 1999, European Biophysics Journal.

[126]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[127]  N. Doltsinis,et al.  Azobenzene photoswitches in bulk materials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  M. Sheetz,et al.  Local force and geometry sensing regulate cell functions , 2006, Nature Reviews Molecular Cell Biology.

[129]  A. Noy,et al.  Biofunctional subwavelength optical waveguides for biodetection. , 2008, ACS nano.

[130]  Rod Balhorn,et al.  Processive translocation and DNA unwinding by individual RecBCD enzyme molecules , 2001, Nature.

[131]  M. Radmacher,et al.  Improvement of thermally induced bending of cantilevers used for atomic force microscopy , 2006 .

[132]  Sotaro Uemura,et al.  Peptide bond formation destabilizes Shine–Dalgarno interaction on the ribosome , 2007, Nature.

[133]  D. Speicher,et al.  Forced Unfolding of Proteins Within Cells , 2007, Science.

[134]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[135]  Christian Franck,et al.  Quantifying cellular traction forces in three dimensions , 2009, Proceedings of the National Academy of Sciences.

[136]  H Schindler,et al.  Cadherin interaction probed by atomic force microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[137]  M. Dembo,et al.  Stresses at the cell-to-substrate interface during locomotion of fibroblasts. , 1999, Biophysical journal.

[138]  Byungkyu Kim,et al.  Cell Stiffness Is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells , 2012, PloS one.

[139]  T. R. Strick,et al.  Micro‐mechanical measurement of the torsional modulus of DNA , 2004, Genetica.

[140]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.

[141]  D. Hammer,et al.  Sensing membrane stress with near IR-emissive porphyrins , 2011, Proceedings of the National Academy of Sciences.

[142]  Pascal Silberzan,et al.  Traction forces exerted through N‐cadherin contacts , 2006, Biology of the cell.

[143]  R. Larson,et al.  Stretching of a single tethered polymer in a uniform flow. , 1995, Science.

[144]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[145]  F. Marquardt,et al.  Dynamics of levitated nanospheres: towards the strong coupling regime , 2012, 1207.1567.

[146]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[147]  Aleksandr Noy,et al.  Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[148]  F S Pavone,et al.  Three-dimensional magneto-optic trap for micro-object manipulation. , 2001, Optics letters.

[149]  Masoud Agah,et al.  The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[150]  A. Cumano,et al.  Forced Unfolding of Proteins Within Cells , 2007 .

[151]  Michael D. Stone,et al.  Structural transitions and elasticity from torque measurements on DNA , 2003, Nature.

[152]  Yiider Tseng,et al.  Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow , 2006, Journal of Cell Science.

[153]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[154]  Xx Li,et al.  Integrated microcantilevers for high-resolution sensing and probing , 2012 .

[155]  Wei Cheng,et al.  Revisiting the Central Dogma One Molecule at a Time , 2011, Cell.

[156]  Yiider Tseng,et al.  Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking , 2004, Journal of Cell Science.

[157]  Yiqiong Zhao,et al.  Using polarization-shaped optical vortex traps for single-cell nanosurgery. , 2007, Nano letters.

[158]  G. Truskey,et al.  Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. , 2000, Biophysical journal.

[159]  Dennis E. Discher,et al.  Physical plasticity of the nucleus in stem cell differentiation , 2007, Proceedings of the National Academy of Sciences.

[160]  Ray Keller,et al.  How we are shaped: the biomechanics of gastrulation. , 2003, Differentiation; research in biological diversity.

[161]  D. Thirumalai,et al.  From mechanical folding trajectories to intrinsic energy landscapes of biopolymers , 2013, Proceedings of the National Academy of Sciences.

[162]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[163]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[164]  Hermann E. Gaub,et al.  Discrete interactions in cell adhesion measured by single-molecule force spectroscopy , 2000, Nature Cell Biology.

[165]  Yiider Tseng,et al.  Micromechanical mapping of live cells by multiple-particle-tracking microrheology. , 2002, Biophysical journal.

[166]  M C Davies,et al.  Detection of antigen-antibody binding events with the atomic force microscope. , 1997, Biochemistry.

[167]  H. Güntherodt,et al.  Dynamic force spectroscopy of single DNA molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Denis Wirtz,et al.  Particle-tracking microrheology of living cells: principles and applications. , 2009, Annual review of biophysics.

[169]  Kimihiro Susumu,et al.  Exceptional near-infrared fluorescence quantum yields and excited-state absorptivity of highly conjugated porphyrin arrays. , 2006, Journal of the American Chemical Society.

[170]  Carlos Bustamante,et al.  Inter-Subunit Coordination in a Homomeric Ring-ATPase , 2009, Nature.

[171]  M. Rief,et al.  The Complex Folding Network of Single Calmodulin Molecules , 2011, Science.

[172]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[173]  H. Gaub,et al.  Affinity-matured recombinant antibody fragments analyzed by single-molecule force spectroscopy. , 2007, Biophysical journal.

[174]  S. Grimes,et al.  Bacteriophage φ29 DNA packaging , 2002 .

[175]  S. Craig,et al.  Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. , 2006, Journal of the American Chemical Society.

[176]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[177]  Ultrasensitive Measurement of MEMS Cantilever Displacement Below the Photon Shot Noise Limit , 2014 .

[178]  Taekjip Ha,et al.  Single-molecule nanometry for biological physics , 2013, Reports on progress in physics. Physical Society.

[179]  E. Manders,et al.  Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules , 2003, EMBO reports.

[180]  P. Bisch,et al.  LexA-DNA bond strength by single molecule force spectroscopy. , 2004, Biophysical journal.

[181]  R. Blankespoor,et al.  Estimating kinetic and thermodynamic parameters from single molecule enzyme-inhibitor interactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[182]  H. Güntherodt,et al.  Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[183]  M. Rief,et al.  The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. , 1998, Biophysical journal.

[184]  N. B. Viana,et al.  Absolute calibration of forces in optical tweezers , 2014 .

[185]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[186]  V. Serebrov,et al.  Establishing a Mechanistic Basis for the Large Kinetic Steps of the NS3 Helicase* , 2009, Journal of Biological Chemistry.

[187]  M. Rossmann,et al.  Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. , 2008, Structure.

[188]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[189]  R. Lavery,et al.  DNA: An Extensible Molecule , 1996, Science.

[190]  C. S. Chen,et al.  Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. , 1998, Molecular biology of the cell.

[191]  R. Detels,et al.  CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. , 1998, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[192]  Jens Michaelis,et al.  Mechanism of Force Generation of a Viral DNA Packaging Motor , 2005, Cell.

[193]  Michelle D. Wang,et al.  Synergistic action of RNA polymerases in overcoming the nucleosomal barrier , 2010, Nature Structural &Molecular Biology.

[194]  E. Meyer,et al.  Scanning Probe Microscopy , 2021, Graduate Texts in Physics.

[195]  J. Toca-Herrera,et al.  A simple method for probing the mechanical unfolding pathway of proteins in detail , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[196]  Cornelia Denz,et al.  Three-dimensional exploration and mechano-biophysical analysis of the inner structure of living cells. , 2013, Small.

[197]  Dong Liu,et al.  Ultrasensitive force detection with a nanotube mechanical resonator. , 2013, Nature nanotechnology.

[198]  K. Jacobson,et al.  Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. , 1996, Biophysical journal.

[199]  Joshua W. Shaevitz,et al.  Backtracking by single RNA polymerase molecules observed at near-base-pair resolution , 2003, Nature.

[200]  R Lavery,et al.  Stretched and overwound DNA forms a Pauling-like structure with exposed bases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[201]  P. Kosuri,et al.  Single-molecule Force Spectroscopy Approach to Enzyme Catalysis* , 2010, The Journal of Biological Chemistry.

[202]  Dino Di Carlo,et al.  Hydrodynamic stretching of single cells for large population mechanical phenotyping , 2012, Proceedings of the National Academy of Sciences.

[203]  David R. Smith,et al.  Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. , 2012, Nano letters.

[204]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[205]  S. Marqusee,et al.  Protein folding and unfolding under force. , 2013, Biopolymers.

[206]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[207]  Ravindra V Dalal,et al.  Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. , 2006, Molecular cell.

[208]  E. Evans,et al.  Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. , 1995, Biophysical journal.

[209]  Vinod Subramaniam,et al.  Direct observation of nanomechanical properties of chromatin in living cells. , 2007, Nano letters.

[210]  R W Gore,et al.  Locomotive forces produced by single leukocytes in vivo and in vitro. , 1995, The American journal of physiology.

[211]  X. Xie,et al.  Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA , 2007, Nature Methods.

[212]  Sami Alom Ruiz,et al.  Mechanical tugging force regulates the size of cell–cell junctions , 2010, Proceedings of the National Academy of Sciences.

[213]  D. Anselmetti,et al.  Supramolecular chemistry at the single-molecule level. , 2005, Angewandte Chemie.

[214]  Yu Ding,et al.  Design Evaluation of Multi-station Assembly Processes by Using State Space Approach , 2002 .

[215]  P. Zhdan,et al.  Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs. , 2004, Ultramicroscopy.

[216]  Peter Searson,et al.  Magnetic tweezers measurement of single molecule torque. , 2009, Nano letters.

[217]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[218]  Taekjip Ha,et al.  Spring-Loaded Mechanism of DNA Unwinding by Hepatitis C Virus NS3 Helicase , 2007, Science.

[219]  H Delanoë-Ayari,et al.  4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. , 2010, Physical review letters.

[220]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.

[221]  Carlos Bustamante,et al.  Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II , 2009, Science.

[222]  Klaus Suhling,et al.  Imaging intracellular viscosity of a single cell during photoinduced cell death. , 2009, Nature chemistry.

[223]  I. Tinoco,et al.  RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP , 2006, Nature.

[224]  Chemomechanics with molecular force probes , 2010 .

[225]  D E Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton. , 1993, Science.

[226]  Kirstine Berg-Sørensen,et al.  Optical manipulation of single molecules in the living cell. , 2014, Physical chemistry chemical physics : PCCP.

[227]  Richard T. Lee,et al.  Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. , 2004, The Journal of clinical investigation.

[228]  Steven B. Smith,et al.  Ten years of tension: single-molecule DNA , 2003 .

[229]  Russell M. Taylor,et al.  Thin-foil magnetic force system for high-numerical-aperture microscopy. , 2006, The Review of scientific instruments.

[230]  T. Perkins,et al.  Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. , 2012, Nano letters.

[231]  Bryan C. Daniels,et al.  Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. , 2008, Physical review letters.

[232]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[233]  Yves F Dufrêne,et al.  Force nanoscopy of cell mechanics and cell adhesion. , 2013, Nanoscale.

[234]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[235]  Sami Alom Ruiz,et al.  An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling , 2006, The Journal of cell biology.

[236]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[237]  Michael Regnier,et al.  Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. , 2011, Biophysical journal.

[238]  Julio M Fernandez,et al.  Force-Clamp Spectroscopy Monitors the Folding Trajectory of a Single Protein , 2004, Science.

[239]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[240]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.