nnU-Net for Brain Tumor Segmentation

We apply nnU-Net to the segmentation task of the BraTS 2020 challenge. The unmodified nnU-Net baseline configuration already achieves a respectable result. By incorporating BraTS-specific modifications regarding postprocessing, region-based training, a more aggressive data augmentation as well as several minor modifications to the nnUNet pipeline we are able to improve its segmentation performance substantially. We furthermore re-implement the BraTS ranking scheme to determine which of our nnU-Net variants best fits the requirements imposed by it. Our final ensemble took the first place in the BraTS 2020 competition with Dice scores of 88.95, 85.06 and 82.03 and HD95 values of 8.498,17.337 and 17.805 for whole tumor, tumor core and enhancing tumor, respectively.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  Konstantinos Kamnitsas,et al.  Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation , 2017, BrainLes@MICCAI.

[3]  Andriy Myronenko,et al.  3D MRI brain tumor segmentation using autoencoder regularization , 2018, BrainLes@MICCAI.

[4]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[5]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[6]  S. Heiland,et al.  Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. , 2019, The Lancet. Oncology.

[7]  Yan-Ming Zhang,et al.  Bag of Tricks for 3D MRI Brain Tumor Segmentation , 2019, BrainLes@MICCAI.

[8]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  W. Marsden I and J , 2012 .

[10]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[11]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[12]  Aaron Carass,et al.  Why rankings of biomedical image analysis competitions should be interpreted with care , 2018, Nature Communications.

[13]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[14]  Martin Sill,et al.  Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response , 2016, Clinical Cancer Research.

[15]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[16]  Sébastien Ourselin,et al.  Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks , 2017, BrainLes@MICCAI.

[17]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Klaus H. Maier-Hein,et al.  No New-Net , 2018, 1809.10483.

[19]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[21]  Klaus H. Maier-Hein,et al.  Automated Design of Deep Learning Methods for Biomedical Image Segmentation , 2019 .

[22]  Dacheng Tao,et al.  Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task , 2019, BrainLes@MICCAI.

[23]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[24]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[25]  Richard McKinley,et al.  Ensembles of Densely-Connected CNNs with Label-Uncertainty for Brain Tumor Segmentation , 2018, BrainLes@MICCAI.

[26]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[27]  David T. W. Jones,et al.  Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma , 2018, Neuro-oncology.

[28]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Klaus H. Maier-Hein,et al.  Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge , 2017, BrainLes@MICCAI.

[30]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[31]  et al.,et al.  Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge , 2018, ArXiv.

[32]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[33]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.