1H MR spectroscopy in patients with mesial temporal epilepsy

The study provides a review of the basic examination procedures and results of proton magnetic resonance spectroscopy (1H MRS) in patients suffering from mesial temporal lobe epilepsy (MTLE). The source of seizures in MTLE is most often an epileptogenic focus secondary to hippocampal sclerosis.1H MRS currently plays an important role in the non-invasive diagnosis of this type of epileptogenic lesion. The decisive1H MRS parameter characterizing an epileptogenic lesion is a statistically significantly decreased value ofN-acetylaspartate levels compared with control values, most often associated with a decrease in the ratios of the intensities of NAA/Cr, NAA/Cho and NAA/(Cr+Cho) signals. Moreover, MRS makes it possible to distinguish bilateral involvement of mesial temporal structures typically associated with a bilateral decrease in the levels of metabolites and/or their ratios. As regards other metabolic compounds which play an important role in the pathobiochemistry of epilepsy, MRS is employed to study the action of γ-aminobutyric acid (GABA), inositol, lactate, glutamine, and glutamate, the clinical function of which has not been fully clarified as yet. It is in this context that one should consider the application of1H MRS in evaluating the action of some new anti-epileptic agents affecting excitatory and inhibitory amino acids. There is no doubt that in vivo1H MRS, along with other imaging methods, has made a signifcant contribution to the clinical and biochemical description of epileptic seizures and has assumed a prominent position among the techniques of pre-operative examination in epileptic surgery.

[1]  D. Twieg,et al.  Is the intracellular pH different from normal in the epileptic focus of patients with temporal lobe epilepsy? , 1996, Neurology.

[2]  M. Giroud,et al.  Preliminary observations of metabolic characterization of bilateral temporal epileptic focus, using proton magnetic resonance spectroscopy. Three cases. , 1994, Neurological research.

[3]  D. Arnold,et al.  Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures , 1997, Annals of neurology.

[4]  A Connelly,et al.  Lateralization of brain function in childhood revealed by magnetic resonance spectroscopy , 1996, Neurology.

[5]  G. Matson,et al.  Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging , 1993, Annals of neurology.

[6]  G B Matson,et al.  Correlation of seizure frequency with N-acetyl-aspartate levels determined by 1H magnetic resonance spectroscopic imaging. , 1997, Magnetic resonance imaging.

[7]  M. Maier,et al.  Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study , 1996, Schizophrenia Research.

[8]  M Noble,et al.  Specific Expression of N‐Acetylaspartate in Neurons, Oligodendrocyte‐Type‐2 Astrocyte Progenitors, and Immature Oligodendrocytes In Vitro , 1992, Journal of neurochemistry.

[9]  P. Garcia,et al.  Application of spectroscopic imaging in epilepsy. , 1995, Magnetic resonance imaging.

[10]  C. Jack,et al.  New technical developments in magnetic resonance imaging of epilepsy. , 1995, Magnetic resonance imaging.

[11]  R. Lesser,et al.  Proton MR spectroscopy in patients with seizure disorders. , 1994, AJNR. American journal of neuroradiology.

[12]  D. Gadian,et al.  Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy , 1996, Annals of neurology.

[13]  S. Lehéricy,et al.  [Magnetic resonance imaging of temporal lobe epilepsy]. , 1996, Journal de radiologie.

[14]  G J Barker,et al.  Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia , 1995, Psychological Medicine.

[15]  Joshua R. Smith,et al.  Wada memory testing and hippocampal volume measurements in the evaluation for temporal lobectomy , 1993, Neurology.

[16]  P. Garcia,et al.  Imaging criteria to identify the epileptic focus. Magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography scanning, and single photon emission computed tomography. , 1993, Neurosurgery clinics of North America.

[17]  M. Décorps,et al.  Localized Spectroscopy Using Static Magnetic Field Gradients: Comparison of Techniques , 1992 .

[18]  R. Mattson,et al.  Human Brain γ‐Aminobutyric Acid Levels and Seizure Control Following Initiation of Vigabatrin Therapy , 1996, Journal of neurochemistry.

[19]  B. Barrere,et al.  Effects of kainate-induced seizures on cerebral metabolism: a combined1H and 31P NMR study in rat , 1994, Brain Research.

[20]  C. Epstein,et al.  Evaluation of 1H magnetic resonance spectroscopic imaging as a diagnostic tool for the lateralization of epileptogenic seizure foci. , 1996, The British journal of radiology.

[21]  R Stollberger,et al.  Magnetic Resonance Imaging and Spectroscopy Findings After Focal Status Epilepticus , 1995, Epilepsia.

[22]  R. Kauppinen,et al.  Reduced N-acetylaspartate concentration in temporal lobe epilepsy by quantitative 1H MRS in vivo. , 1994, Neuroreport.

[23]  Overview--the role of NMR spectroscopy in epilepsy. , 1995, Magnetic resonance imaging.

[24]  D. Arnold,et al.  Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images , 1994, Annals of neurology.

[25]  R. Kuzniecky,et al.  Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy. , 1995, Magnetic resonance imaging.

[26]  K. Behar,et al.  Vigabatrin: effect on brain GABA levels measured by nuclear magnetic resonance spectroscopy , 1995, Acta neurologica Scandinavica. Supplementum.

[27]  M. Mishkin,et al.  Verbal memory impairment after right temporal lobe surgery , 1995, Neurology.

[28]  P. Garcia,et al.  Phosphorus magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy , 1994, Annals of neurology.

[29]  A. Beydoun,et al.  Focal Cerebral Magnetic Resonance Changes Associated with Partial Status Epilepticus , 1994, Epilepsia.

[30]  J. Helpern,et al.  Diffusion-weighted imaging in epilepsy. , 1995, Magnetic resonance imaging.

[31]  P M Matthews,et al.  Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy , 1997, Neurology.

[32]  D. Arnold,et al.  Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: A series of 100 patients , 1997, Annals of neurology.

[33]  D J Jenden,et al.  In vivo 1H MRS choline: correlation with in vitro chemistry/histology. , 1996, Life sciences.

[34]  M. Castillo,et al.  Clinical applications of proton MR spectroscopy. , 1996, AJNR. American journal of neuroradiology.

[35]  D. Gadian,et al.  Early detection of abnormalities in partial epilepsy using magnetic resonance. , 1993, Archives of disease in childhood.

[36]  G Scarlato,et al.  Central nervous system trans‐synaptic effects of acute axonal injury: a 1h magnetic resonance spectroscopy study , 1995, Magnetic resonance in medicine.

[37]  O. Petroff,et al.  Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. , 1995, Magnetic resonance imaging.

[38]  P. Gloor,et al.  MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy , 1993, Neurology.

[39]  D G Gadian,et al.  N-acetylaspartate and epilepsy. , 1995, Magnetic resonance imaging.

[40]  R. Mattson,et al.  Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain , 1995, Epilepsia.

[41]  T. Ebisu,et al.  N-Acetylaspartate as an in vivo Marker of Neuronal Viability in Kainate-Induced Status Epilepticus: 1H Magnetic Resonance Spectroscopic Imaging , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[42]  R. Mattson,et al.  The effect of gabapentin on brain gamma‐aminobutyric acid in patients with epilepsy , 1996, Annals of neurology.

[43]  Michael W. Weiner,et al.  Increased pH and Seizure Foci Inorganic Phosphate in Temporal Demonstrated by [31P]MRS , 1992 .

[44]  Frederick Andermann,et al.  Magnetic resonance imaging in temporal lobe epilepsy: Pathological correlations , 1987, Annals of neurology.

[45]  M. Weiner,et al.  Increased pH and inorganic phosphate in temporal seizure foci demonstrated by [31P]MRS. , 1992, Epilepsia.

[46]  B P Mullan,et al.  Intractable nonlesional epilepsy of temporal lobe origin , 1994, Neurology.

[47]  M. Fine,et al.  A Golgi and horseradish peroxidase study of the sonic motor nucleus of the oyster toadfish. , 1995, Brain, behavior and evolution.

[48]  G. Matson,et al.  Hippocampal N‐acetylaspartate in neocortical epilepsy and mesial temporal lobe epilepsy , 1997, Annals of neurology.

[49]  N. Lundbom,et al.  Temporal lobe pathology in epilepsy: proton magnetic resonance spectroscopy and positron emission tomography study. , 1997, Pediatric neurology.

[50]  M Xue,et al.  Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. , 1994, Radiology.

[51]  R. Mattson,et al.  Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose , 1996, Neurology.

[52]  C R Jack,et al.  Magnetic resonance imaging–based volume studies in temporal lobe epilepsy: Pathological correlations , 1991, Annals of neurology.

[53]  C R Jack,et al.  Epilepsy: surgery and imaging. , 1993, Radiology.

[54]  Jullie W Pan,et al.  Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy , 1997, Neurology.

[55]  D R Fish,et al.  Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. , 1992, Brain : a journal of neurology.

[56]  N. Yamaguchi,et al.  Epilepsy and SPECT , 1994, Neuroscience & Biobehavioral Reviews.

[57]  Oblique proton chemical shift imaging for the presurgical localization of mesial temporal epilepsy , 1997, Magnetic resonance in medicine.

[58]  Jullie W Pan,et al.  Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T , 1995, Annals of neurology.

[59]  P. Luyten,et al.  1H NMR Spectroscopy and Spectroscopic Imaging of The Human Brain , 1992 .

[60]  R. Kuzniecky,et al.  Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging , 1996, Annals of neurology.

[61]  C R Jack,et al.  MRI hippocampal volumes and memory function before and after temporal lobectomy , 1993, Neurology.

[62]  D. Gadian,et al.  H magnetic resonance spectroscopy in the investigation of intractable epilepsy , 1994, Acta neurologica Scandinavica. Supplementum.

[63]  B D Ross,et al.  New aspects of brain physiology , 1996, NMR in biomedicine.

[64]  J. Tsuruda,et al.  Partial volume effects in volume localized phased‐array proton spectroscopy of the temporal lobe , 1995, Journal of magnetic resonance imaging : JMRI.

[65]  R. Mattson,et al.  Human brain GABA levels rise rapidly after initiation of vigabatrin therapy , 1996, Neurology.

[66]  M Ashtari,et al.  Three-dimensional fast low-angle shot imaging and computerized volume measurement of the hippocampus in patients with chronic epilepsy of the temporal lobe. , 1991, AJNR. American journal of neuroradiology.

[67]  S. Sato,et al.  FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy , 1995, Neurology.

[68]  P. Raghunathan,et al.  Evidence for left-right asymmetries in the proton MRS of brain in normal volunteers. , 1997, Magnetic resonance imaging.

[69]  R. Mattson,et al.  Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J S Duncan,et al.  Imaging and epilepsy. , 1997, Brain : a journal of neurology.

[71]  D Bonner,et al.  Magnetic resonance imaging volumetric measurements of the superior temporal gyrus, hippocampus, parahippocampal gyrus, frontal and temporal lobes in late paraphrenia , 1995, Psychological Medicine.

[72]  A Connelly,et al.  Ictal imaging using functional magnetic resonance. , 1995, Magnetic resonance imaging.

[73]  P. Tofts Novel MR image contrast mechanisms in epilepsy. , 1995, Magnetic resonance imaging.

[74]  G. Jackson,et al.  Hippocampal sclerosis can be reliably detected by magnetic resonance imaging , 1990, Neurology.

[75]  C R Jack,et al.  Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation. , 1990, Radiology.

[76]  J S Duncan,et al.  Technique for measuring hippocampal T2 relaxation time. , 1996, AJNR. American journal of neuroradiology.

[77]  J. Peeling,et al.  1H Magnetic resonance spectroscopy of extracts of human epileptic neocortex and hippocampus , 1993, Neurology.

[78]  M. Castillo,et al.  Usefulness of proton MR spectroscopy in the evaluation of temporal lobe epilepsy. , 1998, AJR. American journal of roentgenology.

[79]  P. Gloor,et al.  Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy , 1993, Neurology.

[80]  P. Renshaw,et al.  Proton magnetic resonance spectroscopy of the temporal lobes in schizophrenics and normal controls , 1996, Schizophrenia Research.

[81]  Frederick Andermann,et al.  Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging , 1991, Annals of neurology.

[82]  D. Gadian,et al.  Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  C R Jack,et al.  Hippocampal T2 relaxometry in epilepsy: past, present, and future. , 1996, AJNR. American journal of neuroradiology.

[84]  C. Watson,et al.  Volumetric magnetic resonance imaging in patients with epilepsy and extratemporal structural lesions , 1994 .

[85]  H. Lüders,et al.  Temporal Changes in Proton MRS Metabolites After Kainic Acid‐Induced Seizures in Rat Brain , 1997, Epilepsia.

[86]  E. Achten,et al.  Single-voxel proton MR spectroscopy and positron emission tomography for lateralization of refractory temporal lobe epilepsy. , 1998, AJNR. American journal of neuroradiology.

[87]  G. Fein,et al.  Temporal lobe epilepsy: bilateral hippocampal metabolite changes revealed at proton MR spectroscopic imaging. , 1997, Radiology.

[88]  B. Miller A review of chemical issues in 1H NMR spectroscopy: N‐acetyl‐l‐aspartate, creatine and choline , 1991, NMR in biomedicine.

[89]  W H Theodore,et al.  Measurement of whole temporal lobe and hippocampus for MR volumetry , 1993, Neurology.

[90]  D. Gadian,et al.  Magnetic resonance spectroscopy in temporal lobe epilepsy , 1994, Neurology.

[91]  X. Hu,et al.  Functional MR imaging in the evaluation of the patient with epilepsy. Functional localization. , 1995, Neuroimaging clinics of North America.

[92]  M. Giroud,et al.  Asymmetric metabolic profile in mesial temporal lobes: localized H-1 MR spectroscopy in healthy right-handed and non-right-handed subjects. , 1996, Radiology.

[93]  E. Achten,et al.  Value of single-voxel proton MR spectroscopy in temporal lobe epilepsy. , 1997, AJNR. American journal of neuroradiology.

[94]  A Connelly,et al.  Detection of hippocampal pathology in intractable partial epilepsy , 1993, Neurology.

[95]  M. Weiner,et al.  MR spectroscopic imaging and diffusion‐weighted MRI for early detection of kainate‐induced status epilepticus in the rat , 1996, Magnetic resonance in medicine.

[96]  M. Weiner,et al.  Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy , 1995, Annals of neurology.

[97]  J. Frahm,et al.  On the N‐acetyl methyl resonance in localized 1H NMR spectra of human brain In Vivo , 1991, NMR in biomedicine.

[98]  T. Ishikawa,et al.  Temporal lobe epilepsy: Correlation of proton magnetic resonance spectroscopy and 18F‐fluorodeoxyglucose positron emission tomography , 1997, Magnetic resonance in medicine.

[99]  L. Kevin,et al.  Localized 1 H NMR measurements of y-aminobutyric acid in human brain in vivo , 2005 .

[100]  R. Kuzniecky Neuroimaging in Pediatric Epilepsy , 1996, Epilepsia.

[101]  MR spectroscopy in the evaluation of epilepsy. , 1998, Magnetic resonance imaging clinics of North America.

[102]  G B Matson,et al.  Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging , 1992, Neurology.

[103]  C R Jack,et al.  Magnetic resonance image–based hippocampal volumentry: Correlation with outcome after temporal lobectomy , 1992, Annals of neurology.

[104]  G. Jackson The diagnosis of hippocampal sclerosis: other techniques. , 1995, Magnetic resonance imaging.

[105]  G. di Chiro,et al.  Reproducibility of proton MR spectroscopic imaging findings. , 1996, AJNR. American journal of neuroradiology.

[106]  Toshiro Fujimoto,et al.  Proton magnetic resonance spectroscopy of the left medial temporal and frontal lobes in chronic schizophrenia: preliminary report , 1995, Psychiatry Research: Neuroimaging.

[107]  D. Gadian,et al.  Interictal 99Tcm HMPAO SPECT and 1H MRS in Children with Temporal Lobe Epilepsy , 1997 .

[108]  F Cendes,et al.  Proton magnetic resonance spectroscopic images and MRI volumetric studies for lateralization of temporal lobe epilepsy. , 1995, Magnetic resonance imaging.