Positive Fork Graph Calculus

We introduce and illustrate a graph calculus for proving and deciding the positive identities and inclusions of fork algebras, i.e., those without occurrences of complementation. We show that this graph calculus is sound, complete and decidable. Moreover, the playful nature of this calculus renders it much more intuitive than its equational counterpart.

[1]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[2]  Marcelo F. Frias,et al.  Fork Algebras in Algebra, Logic and Computer Science , 2002, Fundam. Informaticae.

[3]  Wolfram Kahl Relational Matching for Graphical Calculi of Relations , 1999, Inf. Sci..

[4]  Gavin Lowe,et al.  Proofs with Graphs , 1996, Sci. Comput. Program..

[5]  Roger D. Maddux,et al.  Relation-Algebraic Semantics , 1996, Theor. Comput. Sci..

[6]  Marcelo F. Frias,et al.  Fork Algebras , 1997, Relational Methods in Computer Science.

[7]  Alan Jeffrey,et al.  Allegories of Circuits , 1994, LFCS.

[8]  Roger D. Maddux,et al.  Relation Algebras , 1997, Relational Methods in Computer Science.

[9]  Wolfram Kahl Algebraic Graph Derivations for Graphical Calculi , 1996, WG.

[10]  András Simon,et al.  Complexity of equational theory of relational algebras with projection elements , 1992 .

[11]  Wolfram Kahl,et al.  Relational Treatment of Term Graphs With Bound Variables , 1998, Log. J. IGPL.

[12]  Graham Hutton,et al.  Categories, allegories and circuit design , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[13]  Gavin Lowe,et al.  A Graphical Calculus , 1995, MPC.

[14]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[15]  Paulo A. S. Veloso,et al.  Reasoning with Graphs , 2006, WoLLIC.

[16]  Paulo A. S. Veloso,et al.  On Positive Relational Calculi , 2007, Log. J. IGPL.

[17]  Graham Hutton,et al.  A Relational Derivation of a Functional Program , 1992 .