The emergence of proteome-wide technologies: systematic analysis of proteins comes of age

[1]  M. Schindler,et al.  The Intraviral Protein Interaction Network of Hepatitis C Virus* , 2014, Molecular & Cellular Proteomics.

[2]  Emre Guney,et al.  Analysis of the Robustness of Network-Based Disease-Gene Prioritization Methods Reveals Redundancy in the Human Interactome and Functional Diversity of Disease-Genes , 2014, PloS one.

[3]  M. Mann,et al.  Immunoproteomics Using Polyclonal Antibodies and Stable Isotope–labeled Affinity-purified Recombinant Proteins* , 2014, Molecular & Cellular Proteomics.

[4]  James Vlasblom,et al.  Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. , 2014, Journal of proteomics.

[5]  L. Foster,et al.  The Human Proteome Organization Chromosome 6 Consortium: integrating chromosome-centric and biology/disease driven strategies. , 2014, Journal of proteomics.

[6]  N. Johnsson,et al.  Analyzing protein-protein interactions in the post-interactomic era. Are we ready for the endgame? , 2014, Biochemical and biophysical research communications.

[7]  B. Hallström,et al.  RNA- and antibody-based profiling of the human proteome with focus on chromosome 19. , 2014, Journal of proteome research.

[8]  C. Weijer,et al.  SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale , 2014, Nature Communications.

[9]  P. Uetz,et al.  The binary protein-protein interaction landscape of Escherichia coli , 2014, Nature Biotechnology.

[10]  Michael J. Sweredoski,et al.  Quantitative, Time-Resolved Proteomic Analysis by Combining Bioorthogonal Noncanonical Amino Acid Tagging and Pulsed Stable Isotope Labeling by Amino Acids in Cell Culture* , 2014, Molecular & Cellular Proteomics.

[11]  V. S. Rao,et al.  Protein-Protein Interaction Detection: Methods and Analysis , 2014, International journal of proteomics.

[12]  G. Halder,et al.  Discovering the Hippo pathway protein-protein interactome , 2014, Cell Research.

[13]  Xianlin Han,et al.  Alterations in Mouse Brain Lipidome after Disruption of CST Gene: A Lipidomics Study , 2014, Molecular Neurobiology.

[14]  Gennifer E. Merrihew,et al.  Proteogenomic database construction driven from large scale RNA-seq data. , 2014, Journal of proteome research.

[15]  M. Wakelam,et al.  Lipidomics in the analysis of malignancy. , 2014, Advances in biological regulation.

[16]  M. Huss,et al.  HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics , 2013, Nature Methods.

[17]  Sandeep Grover,et al.  Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease , 2014, BMC Genomics.

[18]  R. Mayfield,et al.  Integration of miRNA and Protein Profiling Reveals Coordinated Neuroadaptations in the Alcohol-Dependent Mouse Brain , 2013, PloS one.

[19]  S. V. Heesch,et al.  University of Groningen Quantitative and Qualitative Proteome Characteristics Extracted from In-Depth Integrated Genomics and Proteomics Analysis , 2018 .

[20]  R Zenobi,et al.  Single-Cell Metabolomics: Analytical and Biological Perspectives , 2013, Science.

[21]  E. De Pauw,et al.  Towards Lipidomics of Low-Abundant Species for Exploring Tumor Heterogeneity Guided by High-Resolution Mass Spectrometry Imaging , 2013, International journal of molecular sciences.

[22]  C. Vogel Protein Expression Under Pressure , 2013, Science.

[23]  Jonathan K. Pritchard,et al.  Primate Transcript and Protein Expression Levels Evolve Under Compensatory Selection Pressures , 2013, Science.

[24]  Adam B. Olshen,et al.  The translational landscape of the mammalian cell cycle. , 2013, Molecular cell.

[25]  K. Mechtler,et al.  Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response* , 2013, Molecular & Cellular Proteomics.

[26]  Christine Vogel,et al.  Translation regulation gets its ‘omics’ moment , 2013, Wiley interdisciplinary reviews. RNA.

[27]  M. Mann,et al.  Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry* , 2013, Molecular & Cellular Proteomics.

[28]  Derek J. Bailey,et al.  The One Hour Yeast Proteome* , 2013, Molecular & Cellular Proteomics.

[29]  Andrew G Ewing,et al.  Single-cell imaging mass spectrometry. , 2013, Current opinion in chemical biology.

[30]  R. Milo What is the total number of protein molecules per cell volume? A call to rethink some published values , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  Michael Unser,et al.  A chemostat array enables the spatio-temporal analysis of the yeast proteome , 2013, Proceedings of the National Academy of Sciences.

[32]  Bing Zhang,et al.  NetGestalt: integrating multidimensional omics data over biological networks , 2013, Nature Methods.

[33]  Brenda J. Andrews,et al.  Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins , 2013, PLoS Comput. Biol..

[34]  Yan Zhang,et al.  Towards Systematic Discovery of Signaling Networks in Budding Yeast Filamentous Growth Stress Response Using Interventional Phosphorylation Data , 2013, PLoS Comput. Biol..

[35]  M. Schuldiner,et al.  Formation and dissociation of proteasome storage granules are regulated by cytosolic pH , 2013, The Journal of cell biology.

[36]  Konstantins Jefimovs,et al.  Mass spectrometry-based metabolomics of single yeast cells , 2013, Proceedings of the National Academy of Sciences.

[37]  Sébastien Aubourg,et al.  Plant protein interactomes. , 2013, Annual review of plant biology.

[38]  O. Daescu,et al.  The proteomics and interactomics of human erythrocytes , 2013, Experimental biology and medicine.

[39]  Matthias Mann,et al.  Direct Proteomic Quantification of the Secretome of Activated Immune Cells , 2013, Science.

[40]  Katrin Deinhardt,et al.  Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches , 2013, Cellular and Molecular Life Sciences.

[41]  O. Ornatsky,et al.  An introduction to mass cytometry: fundamentals and applications , 2013, Cancer Immunology, Immunotherapy.

[42]  J. Qian,et al.  Construction of human activity-based phosphorylation networks , 2013, Molecular systems biology.

[43]  Ruedi Aebersold,et al.  Mass spectrometry supported determination of protein complex structure. , 2013, Current opinion in structural biology.

[44]  M. Schuldiner,et al.  A novel single-cell screening platform reveals proteome plasticity during yeast stress responses , 2013, The Journal of cell biology.

[45]  U. Sauer,et al.  Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo Pyrimidine Synthesis , 2013, Science.

[46]  Benjamin Thomas,et al.  QuaNCAT: quantitating proteome dynamics in primary cells , 2013, Nature Methods.

[47]  M. Kirschner,et al.  Profiling of Ubiquitin-like Modifications Reveals Features of Mitotic Control , 2013, Cell.

[48]  M. Mann,et al.  Initial Quantitative Proteomic Map of 28 Mouse Tissues Using the SILAC Mouse* , 2013, Molecular & Cellular Proteomics.

[49]  M. Mann,et al.  The coming age of complete, accurate, and ubiquitous proteomes. , 2013, Molecular cell.

[50]  Jonathan V Sweedler,et al.  Progress toward single cell metabolomics. , 2013, Current opinion in biotechnology.

[51]  D. Goodlett,et al.  Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance* , 2013, Molecular & Cellular Proteomics.

[52]  Eric W. Deutsch,et al.  A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis , 2013, Nature.

[53]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[54]  Marco Y. Hein,et al.  Decoding Human Cytomegalovirus , 2012, Science.

[55]  A. Kimchi,et al.  Life in the balance – a mechanistic view of the crosstalk between autophagy and apoptosis , 2012, Journal of Cell Science.

[56]  R. Beynon,et al.  Proteome Dynamics: Revisiting Turnover with a Global Perspective* , 2012, Molecular & Cellular Proteomics.

[57]  M. Mann,et al.  Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma , 2012, Molecular systems biology.

[58]  Karen Sachs,et al.  Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators , 2012, Nature Biotechnology.

[59]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[60]  R. Aebersold,et al.  Mass spectrometry-based proteomics for systems biology. , 2012, Current opinion in biotechnology.

[61]  Clare E. Simpson,et al.  Adaptation to stress in yeast: to translate or not? , 2012, Biochemical Society transactions.

[62]  Michael J. Sweredoski,et al.  Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT) , 2012, Proteomics.

[63]  Grant W. Brown,et al.  Dissecting DNA damage response pathways by analyzing protein localization and abundance changes during DNA replication stress , 2012, Nature Cell Biology.

[64]  Philipp J. Keller,et al.  Tandem fluorescent protein timers for in vivo analysis of protein dynamics , 2012, Nature Biotechnology.

[65]  R. Aebersold,et al.  Mass spectrometry-based proteomics and network biology. , 2012, Annual review of biochemistry.

[66]  R. Beynon,et al.  Protein turnover: Measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids , 2012, Proteomics.

[67]  Uri Alon,et al.  Using bleach-chase to measure protein half-lives in living cells , 2012, Nature Protocols.

[68]  Hugo Y. K. Lam,et al.  Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes , 2012, Cell.

[69]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[70]  Nicholas T. Ingolia,et al.  High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling , 2011, Science.

[71]  Maya Schuldiner,et al.  Getting the whole picture: combining throughput with content in microscopy , 2011, Journal of Cell Science.

[72]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[73]  Martin Kircher,et al.  Deep proteome and transcriptome mapping of a human cancer cell line , 2011, Molecular systems biology.

[74]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[75]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[76]  M. Mann,et al.  System-wide Perturbation Analysis with Nearly Complete Coverage of the Yeast Proteome by Single-shot Ultra HPLC Runs on a Bench Top Orbitrap* , 2011, Molecular & Cellular Proteomics.

[77]  Emma Lundberg,et al.  Systematic Analysis of Protein Pools, Isoforms, and Modifications Affecting Turnover and Subcellular Localization , 2011, Molecular & Cellular Proteomics.

[78]  A. Heck,et al.  Investigating the role of FGF‐2 in stem cell maintenance by global phosphoproteomics profiling , 2011, Proteomics.

[79]  Jennifer M. Bolin,et al.  Proteomic and phosphoproteomic comparison of human ES and iPS cells , 2011, Nature Methods.

[80]  Michelle S. Scott,et al.  A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells* , 2011, Molecular & Cellular Proteomics.

[81]  R. Aebersold,et al.  Quantification of mRNA and protein and integration with protein turnover in a bacterium , 2011, Molecular systems biology.

[82]  Henry H. N. Lam,et al.  Absolute quantification of microbial proteomes at different states by directed mass spectrometry , 2011, Molecular systems biology.

[83]  A. Gasch,et al.  Molecular Systems Biology Peer Review Process File a Dynamic Model of Proteome Changes Reveals New Roles for Transcript Alteration in Yeast Transaction Report , 2022 .

[84]  S. Navani,et al.  The human protein atlas , 2011 .

[85]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[86]  Steven M. Johnson,et al.  Determinants of nucleosome organization in primary human cells , 2011, Nature.

[87]  Sean C. Bendall,et al.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum , 2011, Science.

[88]  Y. Pilpel,et al.  Determinants of translation efficiency and accuracy , 2011, Molecular systems biology.

[89]  J. Sweedler,et al.  Profiling metabolites and peptides in single cells , 2011, Nature Methods.

[90]  M. Mann,et al.  System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation , 2011, Science Signaling.

[91]  P. Aloy,et al.  Interactome mapping suggests new mechanistic details underlying Alzheimer's disease. , 2011, Genome research.

[92]  A. Oudenaarden,et al.  Cellular Decision Making and Biological Noise: From Microbes to Mammals , 2011, Cell.

[93]  Uri Alon,et al.  Proteome Half-Life Dynamics in Living Human Cells , 2011, Science.

[94]  Sebastian J Maerkl,et al.  Next generation microfluidic platforms for high-throughput protein biochemistry. , 2011, Current opinion in biotechnology.

[95]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[96]  E. Lundberg,et al.  Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.

[97]  Harkamal Walia,et al.  Protein abundances are more conserved than mRNA abundances across diverse taxa , 2010, Proteomics.

[98]  W. Huh,et al.  In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay. , 2010, Journal of microbiological methods.

[99]  S. Fields,et al.  High-throughput profiling of amino acids in strains of the Saccharomyces cerevisiae deletion collection. , 2010, Genome research.

[100]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[101]  Florian Gnad,et al.  Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints , 2010, Cell.

[102]  Jean Sippy,et al.  Decision Making at a Subcellular Level Determines the Outcome of Bacteriophage Infection , 2010, Cell.

[103]  Timothy J Griffin,et al.  Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. , 2010, Journal of proteome research.

[104]  U. Alon,et al.  Protein Dynamics in Drug Combinations: a Linear Superposition of Individual-Drug Responses , 2010, Cell.

[105]  Jaime Prilusky,et al.  Dynamic Proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells , 2009, Nucleic Acids Res..

[106]  M. Mann,et al.  Yeast expression proteomics by high-resolution mass spectrometry. , 2010, Methods in enzymology.

[107]  J. Lippincott-Schwartz,et al.  Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. , 2009, Trends in cell biology.

[108]  Jesper V Olsen,et al.  Global analysis of the yeast osmotic stress response by quantitative proteomics. , 2009, Molecular bioSystems.

[109]  N. Balaban,et al.  The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. , 2009, FEMS microbiology reviews.

[110]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[111]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[112]  R. Aebersold,et al.  Comparative Functional Analysis of the Caenorhabditis elegans and Drosophila melanogaster Proteomes , 2009, PLoS biology.

[113]  Marc W Kirschner,et al.  Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays , 2009, Proceedings of the National Academy of Sciences.

[114]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[115]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[116]  M. Selbach,et al.  Global analysis of cellular protein translation by pulsed SILAC , 2009, Proteomics.

[117]  Robert J Beynon,et al.  Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. , 2009, Journal of proteome research.

[118]  Sorina C. Popescu,et al.  MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. , 2009, Genes & development.

[119]  Florence Besse,et al.  Translational control of localized mRNAs: restricting protein synthesis in space and time , 2008, Nature Reviews Molecular Cell Biology.

[120]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[121]  Tommer Ravid,et al.  Diversity of degradation signals in the ubiquitin–proteasome system , 2008, Nature Reviews Molecular Cell Biology.

[122]  V. Wong,et al.  Monitoring Protein-Protein Interactions between the Mammalian Integral Membrane Transporters and PDZ-interacting Partners Using a Modified Split-ubiquitin Membrane Yeast Two-hybrid System*S , 2008, Molecular & Cellular Proteomics.

[123]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[124]  P. Zimmermann,et al.  Genome-Scale Proteomics Reveals Arabidopsis thaliana Gene Models and Proteome Dynamics , 2008, Science.

[125]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[126]  Jay J Thelen,et al.  Biochemical approaches for discovering protein-protein interactions. , 2008, The Plant journal : for cell and molecular biology.

[127]  A. Bailey,et al.  Palmitoylated proteins: purification and identification , 2007, Nature Protocols.

[128]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[129]  Uri Alon,et al.  Generation of a fluorescently labeled endogenous protein library in living human cells , 2007, Nature Protocols.

[130]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[131]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[132]  Anne E Carpenter,et al.  Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins , 2006, Nature Methods.

[133]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[134]  J. Yates,et al.  Global Analysis of Protein Palmitoylation in Yeast , 2006, Cell.

[135]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[136]  Burkhard Rost,et al.  Protein–Protein Interactions More Conserved within Species than across Species , 2006, PLoS Comput. Biol..

[137]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[138]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[139]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[140]  M. Chalfie,et al.  Combinatorial Marking of Cells and Organelles with Reconstituted Fluorescent Proteins , 2004, Cell.

[141]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[142]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[143]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[144]  E. Winzeler,et al.  Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[145]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[146]  E. Lander,et al.  Remodeling of yeast genome expression in response to environmental changes. , 2001, Molecular biology of the cell.

[147]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[148]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[149]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[150]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.