Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer

[1] Observations by the Compact Reconnaissance Imaging Spectrometer (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) over the range 440–2920 nm of the very dusty Martian atmosphere of the 2007 planet-encircling dust event are combined with those made by both Mars Exploration Rovers (MERs) to better characterize the single scattering albedo (ω0) of Martian dust aerosols. Using the diagnostic geometry of the CRISM emission phase function (EPF) sequences and the “ground truth” connection provided at both MER locations allows one to more effectively isolate the single scattering albedo (ω0). This approach eliminates a significant portion of the type of uncertainty involved in many of the earlier radiative transfer analyses. Furthermore, the use of a “first principles” or microphysical representation of the aerosol scattering properties offers a direct path to produce a set of complex refractive indices (m = n + ik) that are consistent with the retrieved ω0 values. We consider a family of effective particle radii: 1.2, 1.4, 1.6, and 1.8 μm. The resulting set of model data comparisons, ω0, and m are presented along with an assessment of potential sources of error and uncertainty. We discuss our results within the context of previous work, including the apparent dichotomy of the literature values: “dark” (solar band ω0 = 0.89–0.90) and “bright” (solar band ω0 = 0.92–0.94). Previous work suggests that a mean radius of 1.8 μm is representative for the conditions sampled by the CRISM observations. Using the m for this case and a smaller effective particle radius more appropriate for diffuse dust conditions (1.4 μm), we examine EPF-derived optical depths relative to the MER 880 nm optical depths. Finally, we explore the potential impact of the resulting brighter solar band ω0 of 0.94 to atmospheric temperatures in the planetary boundary layer.

[1]  James F. Bell,et al.  Mars Exploration Rover Navigation Camera in‐flight calibration , 2008 .

[2]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[3]  O. Forni,et al.  A study of the properties of a local dust storm with Mars Express OMEGA and PFS data , 2009 .

[4]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[5]  Michael I. Mishchenko,et al.  Multiple scattering, radiative transfer, and weak localization in discrete random media: Unified microphysical approach , 2008 .

[6]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[7]  R. Todd Clancy,et al.  Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: Seasonal and interannual variations , 1999 .

[8]  Jean-Pierre Bibring,et al.  Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars , 2007 .

[9]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[10]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[11]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[12]  P. Gierasch,et al.  A study of the thermal and dynamical structure of the martian lower atmosphere , 1968 .

[13]  Ralph A. Kahn,et al.  Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data , 1977 .

[14]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[15]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[16]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[17]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[18]  H. Savijärvi,et al.  Surface and boundary‐layer modelling for the Mars Exploration Rover sites , 2008 .

[19]  P. Gierasch,et al.  The Effect of Dust on the Temperature of the Martian Atmosphere , 1972 .

[20]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[21]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[22]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[23]  Michael D. Smith Spacecraft Observations of the Martian Atmosphere , 2008 .

[24]  Oleg Korablev,et al.  Open questions on optical properties of dust and the opacity of the Martian atmosphere , 2002 .

[25]  M. Shepard,et al.  A test of the Hapke photometric model , 2007 .

[26]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[27]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[28]  V. I. Moroz,et al.  Physical Properties of Dust in the Martian Atmosphere: Analysis of Contradictions and Possible Ways of Their Resolution , 2003 .

[29]  Timothy H. McConnochie,et al.  Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance , 2009 .

[30]  R. Todd Clancy,et al.  A new look at dust and clouds in the Mars atmosphere: analysis of emission-phase-function sequences from global viking IRTM observations , 1991 .

[31]  Larry D. Travis,et al.  Satellite retrieval of aerosol properties over the ocean using measurements of reflected sunlight: Effect of instrumental errors and aerosol absorption , 1997 .

[32]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[33]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[34]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[35]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[36]  J. Pollack,et al.  Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols , 1980 .

[37]  T. E. Burke,et al.  Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9. , 1973 .

[38]  R. Haberle,et al.  Investigations of the variability of dust particle sizes in the martian atmosphere using the NASA Ames General Circulation Model , 2008 .

[39]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[40]  M. Malin,et al.  Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager , 2008 .

[41]  Robert M. Haberle,et al.  Three‐dimensional numerical simulation of Martian global dust storms , 1995 .

[42]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.