Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions

In this paper we eliminate altogether geometrical conditions that were assumed (even) with control action on the entire boundary in prior literature: (i) strict convexity of our paper [LT4] on uniform stabilization of the wave equation in the (optimal) state spaceL2(Ω)×H−1(Ω) withL2(Σ) Dirichlet feedback control, as well as (ii) “star-shaped” conditions in papers [C1], [La1], and [Tr1] on uniform stabilization and [Lio1] and [LT5] on exact controllability in the energy spaceH1(Ω)×L2(Ω) of the wave equation withL2(Σ)-Neumann feedback control. Key to the present improvements is a pseudodifferential analysis which permits us to express certain boundary traces of the solution in terms of other traces modulo lower-order interior terms. See Lemma 3.1 for the Dirichlet case and Lemma 7.2 for the Neumann case.

[1]  L. Hörmander Linear Partial Differential Operators , 1963 .

[2]  P. H. Müller,et al.  L. Hörmander, Linear Partial Differential Operators. VIII + 284 S. m. 1 Fig. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 42,- . , 1964 .

[3]  Nobuhisa Iwasaki Local Decay of Solutions for Symmetric Hyperbolic Systems with Dissipative and Coercive Boundary Conditions in Exterior Domains , 1969 .

[4]  J. Ralston Solutions of the wave equation with localized energy , 1969 .

[5]  R. Phillips,et al.  Decaying modes for the wave equation in the exterior of an obstacle , 1969 .

[6]  Jeffrey Rauch,et al.  Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains , 1974 .

[7]  Walter A. Strauss,et al.  Dispersal of waves vanishing on the boundary of an exterior domain , 1975 .

[8]  Michael Taylor,et al.  Reflection of singularities of solutions to systems of differential equations , 1975 .

[9]  R. Melrose,et al.  Propagation of singularities along gliding rays , 1977 .

[10]  James Ralston,et al.  Decay of solutions of the wave equation outside nontrapping obstacles , 1977 .

[11]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[12]  W. Littman Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients , 1978 .

[13]  Goong Chen,et al.  A Note on the Boundary Stabilization of the Wave Equation , 1981 .

[14]  Irena Lasiecka,et al.  A cosine operator approach to modelingL2(0,T; L2 (Γ))—Boundary input hyperbolic equations , 1981 .

[15]  J. Lagnese Decay of solutions of wave equations in a bounded region with boundary dissipation , 1983 .

[16]  R. Triggiani,et al.  Regularity of hyperbolic equations underL2(0,T; L2(Γ))-Dirichlet boundary terms , 1983 .

[17]  R. Triggiani,et al.  Riccati equations for hyperbolic partial differential equations with L2(O,T; L2(T)) - Dirichlet boundary terms , 1985, 1985 24th IEEE Conference on Decision and Control.

[18]  Michael E. Taylor,et al.  The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .

[19]  Lop Fat Ho Observabilité frontière de l'équation des ondes , 1986 .

[20]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[21]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[22]  W. Littman Near optimal time boundary controllability for a class of hyperbolic equations , 1987 .

[23]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .

[24]  Uniform boundary stabilization of homogeneous isotropic plates , 1987 .

[25]  Irena Lasiecka,et al.  Uniform exponential energy decay of wave equations in a bounded region with L2(0, ∞; L2 (Γ))-feedback control in the Dirichlet boundary conditions , 1987 .

[26]  J. Lagnese,et al.  Note on boundary stabilization of wave equations , 1988 .

[27]  Roberto Triggiani,et al.  Exact boundary controllability onL2(Ω) ×H−1(Ω) of the wave equation with dirichlet boundary control acting on a portion of the boundary∂Ω, and related problems , 1988 .

[28]  Irena Lasiecka,et al.  Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems , 1988 .

[29]  Jacques-Louis Lions,et al.  Modelling Analysis and Control of Thin Plates , 1988 .

[30]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[31]  R. Triggiani,et al.  Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case , 1989 .

[32]  Irena Lasiecka,et al.  Sharp regularity theory for second order hyperbolic equations of Neumann type , 1990 .

[33]  R. Triggiani Wave equation on a bounded domain with boundary dissipation: An operator approach☆ , 1989 .

[34]  C. Bardos,et al.  Microlocal ideas in control and stabilization , 1989 .

[35]  R. Triggiani,et al.  Exact controllability of the wave equation with Neumann boundary control , 1989 .

[36]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[37]  I. Lasiecka,et al.  The wave equation with semilinear Neumann boundary conditions , 1990 .

[38]  C. Bardos,et al.  Stabilisation de l'équation des ondes au moyen d'un feedback portant sur la condition aux limites de Dirichlet , 1991 .

[39]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[40]  Irena Lasiecka,et al.  Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.

[41]  Irena Lasiecka,et al.  Sharp trace estimates of solutions to Kirchhoff and Euler-Bernoulli equations , 1993 .