Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation

Abstract In this work the design of the latest version of the GROMOS software for biomolecular simulation, GROMOS11 is discussed. Detailed organisation and class descriptions of the MD++ simulation program and the GROMOS++ analysis package are given. It is shown how the code was documented, how it can be easily modified and extended, how debugging of it is carried out. Additional efficiency and parallelisation concepts are presented and benchmarked.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Wilfred F van Gunsteren,et al.  Enhanced sampling of particular degrees of freedom in molecular systems based on adiabatic decoupling and temperature or force scaling. , 2011, The Journal of chemical physics.

[3]  Nicholas Nethercote,et al.  Valgrind: a framework for heavyweight dynamic binary instrumentation , 2007, PLDI '07.

[4]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[5]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[6]  Wilfred F van Gunsteren,et al.  A refined, efficient mean solvation force model that includes the interior volume contribution. , 2011, The journal of physical chemistry. B.

[7]  Wilfred F van Gunsteren,et al.  Sampling of rare events using hidden restraints. , 2006, The journal of physical chemistry. B.

[8]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[9]  Philippe H. Hünenberger,et al.  A fast pairlist‐construction algorithm for molecular simulations under periodic boundary conditions , 2004, J. Comput. Chem..

[10]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[11]  Wilfred F. van Gunsteren,et al.  New functionalities in the GROMOS biomolecular simulation software , 2012, J. Comput. Chem..

[12]  H. Berendsen,et al.  A LEAP-FROG ALGORITHM FOR STOCHASTIC DYNAMICS , 1988 .

[13]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[14]  W. F. Gunsteren,et al.  Biomolecular structure refinement based on adaptive restraints using local-elevation simulation , 2007, Journal of biomolecular NMR.

[15]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[16]  W. V. van Gunsteren,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001 .

[17]  Wilfred F van Gunsteren,et al.  An approximate but fast method to impose flexible distance constraints in molecular dynamics simulations. , 2005, The Journal of chemical physics.

[18]  Philippe H. Hünenberger,et al.  Calculation of the group-based pressure in molecular simulations. I. A general formulation including Ewald and particle-particle-particle-mesh electrostatics , 2002 .

[19]  Philippe H. Hünenberger,et al.  Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water , 2010, J. Comput. Chem..

[20]  Baldomero Oliva,et al.  Calculation of the group-based pressure in molecular simulations. II. Numerical tests and application to liquid water , 2002 .

[21]  Wilfred F van Gunsteren,et al.  GROMOS++ Software for the Analysis of Biomolecular Simulation Trajectories. , 2011, Journal of chemical theory and computation.

[22]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[23]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[24]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[25]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[26]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[27]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[28]  Wilfred F van Gunsteren,et al.  Enveloping distribution sampling: a method to calculate free energy differences from a single simulation. , 2007, The Journal of chemical physics.

[29]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[30]  Andrea Amadei,et al.  Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency , 2000 .

[31]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[32]  Wilfred F van Gunsteren,et al.  Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software. , 2011, The journal of physical chemistry. B.

[33]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[34]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[35]  M. Karplus,et al.  A method for constrained energy minimization of macromolecules , 1980 .

[36]  PEVIEW VSION,et al.  The GROMOS Software for (Bio)Molecular Simulation , 2011 .

[37]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[38]  Wilfred F. van Gunsteren,et al.  A GPU solvent–solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software , 2010, J. Comput. Chem..

[39]  Wilfred F van Gunsteren,et al.  Multiple free energies from a single simulation: extending enveloping distribution sampling to nonoverlapping phase-space distributions. , 2008, The Journal of chemical physics.

[40]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[41]  B. Zagrovic,et al.  Mechanism and thermodynamics of binding of the polypyrimidine tract binding protein to RNA. , 2007, Biochemistry.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[44]  Jane R. Allison,et al.  Biomolecular structure refinement using the GROMOS simulation software , 2011, Journal of biomolecular NMR.