Fast and Optimal WENO Schemes for Degenerate Parabolic Conservation Laws

[1]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[2]  F. ARÀNDIGA,et al.  Analysis of WENO Schemes for Full and Global Accuracy , 2011, SIAM J. Numer. Anal..

[3]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[4]  Chi-Wang Shu,et al.  A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions , 2007, J. Sci. Comput..

[5]  Nail K. Yamaleev,et al.  A systematic methodology for constructing high-order energy stable WENO schemes , 2009, J. Comput. Phys..

[6]  Yuanyuan Liu,et al.  High Order Finite Difference WENO Schemes for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[7]  Mehdi Dehghan,et al.  A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations , 2013, Comput. Phys. Commun..

[8]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[9]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[10]  Antonio Baeza,et al.  On the Efficient Computation of Smoothness Indicators for a Class of WENO Reconstructions , 2019, Journal of Scientific Computing.

[11]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[12]  Pep Mulet,et al.  Weights Design For Maximal Order WENO Schemes , 2014, J. Sci. Comput..

[13]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[14]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[15]  Qiang Zhang,et al.  Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method , 2009, J. Sci. Comput..

[16]  K. Karlsen,et al.  An Unconditionally Stable Splitting Scheme for a Class of Nonlinear Parabolic Equations , 1999 .

[17]  M. Sepúlveda,et al.  On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels , 2006 .

[18]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[19]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[20]  Todd Arbogast,et al.  Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes , 2019, J. Comput. Phys..