Enhanced up-conversion for photovoltaics via concentrating integrated optics.

Concentrating optics are integrated into up-conversion photovoltaic (UC-PV) devices to independently concentrate sub-band-gap photons on the up-conversion layer, without affecting the full solar concentration on the overlying solar cell. The UC-PV devices consist of silicon solar cells optimized for up-conversion, coupled with tapered and parabolic dielectric concentrators, and hexagonal sodium yttrium fluoride (β-NaYF₄) up-converter doped with 25% trivalent erbium (Er³⁺). A normalized external quantum efficiency of 1.75x10⁻² cm²/W and 3.38x10⁻² cm²/W was obtained for the UC-PV device utilizing tapered and parabolic concentrators respectively. Although low to moderate concentration was shown to maximize UC, higher concentration lead to saturation and reduced external quantum efficiency. The presented work highlights some of the implications associated with the development of UC-PV devices and designates a substantial step for integration in concentrating PV.

[1]  B. Richards,et al.  Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices , 2013 .

[2]  R. Winston,et al.  Sunlight brighter than the Sun , 1990, Nature.

[3]  Usn,et al.  INFRARED REFLECTANCE AND EMITTANCE OF SILVER AND GOLD EVAPORATED IN ULTRAHIGH VACUUM , 2012 .

[4]  T. Trupke,et al.  Improving solar cell efficiencies by the up-conversion of sub-bandgap light , 2002 .

[5]  Stefan W. Glunz,et al.  Silicon concentrator cells designed for a direct mounting on compound parabolic concentrator , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[6]  Tapas K. Mallick,et al.  Coupling of sunlight into optical fibres and spectral dependence for solar energy applications , 2013 .

[7]  H. Güdel,et al.  Anomalous power dependence of sensitized upconversion luminescence , 2005 .

[8]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[9]  J. Guillemoles,et al.  Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency , 2011 .

[10]  Carlos Algora,et al.  A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns , 2001 .

[11]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[12]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[13]  A. Shalav,et al.  Enhancing the Near-Infrared Spectral Response of Silicon Optoelectronic Devices via Up-Conversion , 2007, IEEE Transactions on Electron Devices.

[14]  S. Fischer,et al.  Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals , 2013 .

[15]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[16]  Bryce S. Richards,et al.  Upconverter Silicon Solar Cell Devices for Efficient Utilization of Sub-Band-Gap Photons Under Concentrated Solar Radiation , 2014, IEEE Journal of Photovoltaics.

[17]  Joseph P. Zinter,et al.  Maximizing fluorescence collection efficiency in multiphoton microscopy , 2011, Optics express.

[18]  Stefan W. Glunz,et al.  BICON: high concentration PV using one‐axis tracking and silicon concentrator cells , 2006 .

[19]  M. Tonelli,et al.  BaY2F8 doped with Er3+: An upconverter material for photovoltaic application , 2013 .

[20]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[21]  J. Gordon,et al.  Toward ultrahigh-flux photovoltaic concentration , 2004 .

[22]  G. H. Bauer,et al.  Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization , 2010 .

[23]  J. Bennett,et al.  Infrared Reflectance and Emittance of Silver and Gold Evaporated in Ultrahigh Vacuum , 1965 .

[24]  Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices. , 2012, Optics express.

[25]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[26]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[27]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[28]  R. Goodfellow,et al.  The coupling of light‐emitting diodes to optical fibers using sphere lenses , 1975 .

[29]  J. Gordon,et al.  Effects of ultra‐high flux and intensity distribution in multi‐junction solar cells , 2006 .

[30]  M. Peters,et al.  Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies , 2008, 2008 Conference on Optoelectronic and Microelectronic Materials and Devices.

[31]  Bryce S. Richards,et al.  Bifacial n-type silicon solar cells for upconversion applications , 2014 .

[32]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. , 2004 .

[33]  Jim Handy,et al.  Concentrating PV survey: an unbiased overview , 2011, Optics + Photonics for Sustainable Energy.

[34]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[35]  Claudia Strümpel,et al.  Application of Erbium-Doped Up-Converters to Silicon Solar Cells , 2007 .