Stimulus encoding within the barn owl optic tectum using gamma oscillations vs. spike rate: A modeling approach

The optic tectum of the barn owl is a multimodal structure with multiple layers, with each layer topographically organized according to spatial receptive field. The response of a site to a stimulus can be measured as either spike rate or local field potential (LFP) gamma (25–90 Hz) power; within superficial layers, spike rate and gamma power spatial tuning curves are narrow and contrast-response functions rise slowly. Within deeper layers, however, spike rate tuning curves broaden and gamma power contrast-response functions sharpen. In this work, we employ a computational model to describe the inputs required to generate these transformations from superficial to deep layers and show that gamma power and spike rate can act as parallel information processing streams.

[1]  T. Tömböl,et al.  GABA-immunohistological observations, at the electron-microscopical level, of the neurons of isthmic nuclei in chicken, Gallus domesticus , 1998, Cell and Tissue Research.

[2]  E. Knudsen,et al.  Control from below: the role of a midbrain network in spatial attention , 2011, The European journal of neuroscience.

[3]  Yoram Gutfreund,et al.  Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing. , 2009, Journal of neurophysiology.

[4]  S. Hunt,et al.  Characterization of the pigeon isthmo-tectal pathway by selective uptake and retrograde movement of radioactive compounds and by golgi-like horseradish peroxidase labeling , 1977, Brain Research.

[5]  H. Karten,et al.  Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): A possible substrate for synchronizing tectal channels , 2006, The Journal of comparative neurology.

[6]  H. Karten,et al.  Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia) , 1982, The Journal of comparative neurology.

[7]  S. Hunt,et al.  Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow , 1976, The Journal of comparative neurology.

[8]  Shreesh P Mysore,et al.  The role of a midbrain network in competitive stimulus selection , 2011, Current Opinion in Neurobiology.

[9]  H. Karten,et al.  The afferent connections of the nucleus rotundus in the pigeon. , 1966, Brain research.

[10]  Direct connections between dendritic terminals of tectal ganglion cells and glutamate-positive terminals of presumed optic fibres in layers 4-5 of the optic tectum of Gallus domesticus. A light- and electron microscopic study. , 1999, Neurobiology.

[11]  Eric I Knudsen,et al.  Visual modulation of auditory responses in the owl inferior colliculus. , 2009, Journal of neurophysiology.

[12]  E I Knudsen,et al.  A neural map of auditory space in the owl. , 1978, Science.

[13]  R. Oppenheim,et al.  Novel sources of descending input to the spinal cord of the hatchling chick , 1985, The Journal of comparative neurology.

[14]  E I Knudsen,et al.  Forebrain pathway for auditory space processing in the barn owl. , 1998, Journal of neurophysiology.

[15]  E I Knudsen,et al.  Characterization of a forebrain gaze field in the archistriatum of the barn owl: microstimulation and anatomical connections , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  E. Richfield,et al.  Distributions of GABAA, GABAB, and benzodiazepine receptors in the forebrain and midbrain of pigeons , 1994, The Journal of comparative neurology.

[17]  Terry T. Takahashi,et al.  The synthesis and use of the owl’s auditory space map , 2003, Biological Cybernetics.

[18]  E. Knudsen Auditory and visual maps of space in the optic tectum of the owl , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  S. Hunt,et al.  The projection of the retina upon the optic tectum of the pigeon , 1975, The Journal of comparative neurology.

[20]  Phaseolus vulgaris lectin labelled and GABA immunogold stained terminals in nucleus rotundus. An EM study. , 1994, Journal fur Hirnforschung.

[21]  H. Karten,et al.  Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus) , 2004, The Journal of comparative neurology.

[22]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[23]  A. Reiner,et al.  The distribution of GABA‐containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets , 1994, The Journal of comparative neurology.

[24]  Onur Güntürkün,et al.  The topographical projection of the nucleus isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon , 1990, Neuroscience Letters.

[25]  Eric I. Knudsen,et al.  Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl , 2004, Experimental Brain Research.

[26]  E. Knudsen Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. , 1983, Science.

[27]  Juan Carlos Letelier,et al.  Oscillatory Bursts in the Optic Tectum of Birds Represent Re-Entrant Signals from the Nucleus Isthmi Pars Parvocellularis , 2005, The Journal of Neuroscience.

[28]  E. Knudsen,et al.  Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Harald Luksch,et al.  Cytoarchitecture of the Avian Optic Tectum: Neuronal Substrate for Cellular Computation , 2003, Reviews in the neurosciences.

[30]  H. Karten,et al.  Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study , 1976, The Journal of comparative neurology.

[31]  Eric I. Knudsen,et al.  Global Inhibition and Stimulus Competition in the Owl Optic Tectum , 2010, The Journal of Neuroscience.

[32]  Ulrike Meyer,et al.  Generating oscillatory bursts from a network of regular spiking neurons without inhibition , 2009, Journal of Computational Neuroscience.

[33]  H. Karten,et al.  Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia) , 1997, The Journal of comparative neurology.

[34]  E I Knudsen,et al.  Neural maps of interaural time and intensity differences in the optic tectum of the barn owl , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  E. Knudsen,et al.  Signaling of the Strongest Stimulus in the Owl Optic Tectum , 2011, Journal of Neuroscience.

[36]  E I Knudsen,et al.  Visual instruction of the neural map of auditory space in the developing optic tectum. , 1991, Science.

[37]  Eric I. Knudsen,et al.  Auditory and Visual Space Maps in the Cholinergic Nucleus Isthmi Pars Parvocellularis of the Barn Owl , 2006, The Journal of Neuroscience.

[38]  T. Tömböl Golgi and Electron-Microscopic Golgi-GABA Immunostaining Study of the Avian Optic Tectum , 1998, Cells Tissues Organs.

[39]  Eric I. Knudsen,et al.  Top-down gain control of the auditory space map by gaze control circuitry in the barn owl , 2006, Nature.

[40]  Kwabena Boahen,et al.  Space coding by gamma oscillations in the barn owl optic tectum. , 2011, Journal of neurophysiology.

[41]  P F Knudsen,et al.  Space‐Mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba) , 1983, The Journal of comparative neurology.

[42]  T. Tömböl,et al.  Some data on connections of neurons of nuclei isthmi of the chicken. , 1995, Journal fur Hirnforschung.

[43]  H. Karten,et al.  Bottlebrush dendritic endings and large dendritic fields: Motion‐detecting neurons in the tectofugal pathway , 1998, The Journal of comparative neurology.

[44]  Eric I. Knudsen,et al.  Distinct Mechanisms for Top-Down Control of Neural Gain and Sensitivity in the Owl Optic Tectum , 2008, Neuron.

[45]  José Luis Peña,et al.  Auditory spatial tuning at the crossroads of the midbrain and forebrain. , 2009, Journal of neurophysiology.

[46]  Shreesh P Mysore,et al.  Flexible Categorization of Relative Stimulus Strength by the Optic Tectum , 2011, The Journal of Neuroscience.

[47]  R. Wessel,et al.  Recurrent antitopographic inhibition mediates competitive stimulus selection in an attention network. , 2011, Journal of neurophysiology.

[48]  Eric I. Knudsen,et al.  Top-Down Control of Multimodal Sensitivity in the Barn Owl Optic Tectum , 2007, The Journal of Neuroscience.

[49]  Eric I. Knudsen,et al.  Gated Visual Input to the Central Auditory System , 2002, Science.

[50]  H. Karten,et al.  GABAergic inputs to the nucleus rotundus (pulvinar inferior) of the pigeon (Columba livia) , 1996, The Journal of comparative neurology.

[51]  E. Knudsen,et al.  Reciprocal Inhibition of Inhibition: A Circuit Motif for Flexible Categorization in Stimulus Selection , 2012, Neuron.

[52]  Avinash D. S. Bala,et al.  Auditory Spatial Acuity Approximates the Resolving Power of Space-Specific Neurons , 2007, PloS one.

[53]  J. Pettigrew,et al.  The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia , 1981, The Journal of comparative neurology.