Feasibility study: highly integrated chipset design for compact synthetic aperture radar payload on micro-satellite

Abstract Micro- and nano-satellites are attractive due to the low development and launching costs. Carried by micro- and nano-satellites, synthetic aperture radars (SARs) have great potential for urban, oceanography, land use, and agriculture usages. Different than conventional satellites, the payload of micro- and nano-satellites is limited. This imposes great challenges on the SAR system design. Traditional SARs adopt thousands of millimeter-wave integrated circuit (MMIC) components; they are bulky and power hungry. This paper investigates the feasibility to deploy the emerging technologies to shrink the volume, reduce the cost, and improve the power efficiency of the SAR system. Highly integrated radar transceiver integrated circuits (ICs) are reviewed, and an SAR transceiver IC is developed. Design technologies of low-noise amplifiers (LNAs) and high-power amplifiers (HPAs) are compared, and Gallium Nitride (GaN) technology is proposed. A novel microelectromechanical system-based delay line is also proposed for satellite SAR to reduce the system size. Existing issues and expected improvements of these technologies are also elaborated. This work shows a clear route map for the future shrinkage of SAR system, and would be a useful guideline to the development of compact SARs for micro-satellites.

[1]  J.M. Carroll,et al.  X-band GaAs mHEMT LNAs with 0.5 dB noise figure , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[2]  Helko Breit,et al.  TerraSAR-X technologies and first results , 2006 .

[3]  M. Gouker,et al.  X-band low noise amplifier using SiGe BiCMOS technology , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[4]  Fan Zhang,et al.  A CMOS 77-GHz Receiver Front-End for Automotive Radar , 2013, IEEE Transactions on Microwave Theory and Techniques.

[5]  Yong Wang,et al.  Dual mode acoustic wave sensor for precise pressure reading , 2014 .

[6]  Manfred Zink,et al.  The TerraSAR-L mission and system , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[7]  F. Coromina,et al.  Status and trends for space-borne phased array radar , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[8]  Toshiya Mitomo,et al.  A 77 GHz 90 nm CMOS transceiver for FMCW radar applications , 2009, 2009 Symposium on VLSI Circuits.

[9]  Jeong-Geun Kim,et al.  76–81-GHz CMOS Transmitter With a Phase-Locked-Loop-Based Multichirp Modulator for Automotive Radar , 2015, IEEE Transactions on Microwave Theory and Techniques.

[10]  Y. Liang Study of the airborne and space-borne microwave imaging radar system , 2000, ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364).

[11]  Sen Wang,et al.  Design of $X$ -Band RF CMOS Transceiver for FMCW Monopulse Radar , 2009, IEEE Transactions on Microwave Theory and Techniques.

[12]  Jri Lee,et al.  A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[13]  S. PiotrowiczI,et al.  43 W , 52 % PAE X-Band AlGaN / GaN HEMTs MMIC Amplifiers , 2010 .

[14]  Ying Zhang,et al.  Live demonstration: A Ku-band FMCW synthetic aperture radar transceiver for micro-UAVs , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[15]  Yuanjin Zheng,et al.  A 3.54 nJ/bit-RX, 0.671 nJ/bit-TX Burst Mode Super-Regenerative UWB Transceiver in 0.18-$\mu{\rm m}$ CMOS , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  M. Ludwig,et al.  A miniaturised X-band T/R-module for SAR-systems based on active phased array techniques , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[17]  Yeong-Her Wang,et al.  A 9.1–10.7 GHz 10-W, 40-dB Gain Four-Stage PHEMT MMIC Power Amplifier , 2007, IEEE Microwave and Wireless Components Letters.

[18]  Huili Gong,et al.  Wetland mapping by using multi-band and multitemporal SAR images: A case study of Hong he National Natural Reserve , 2010, 2010 18th International Conference on Geoinformatics.

[19]  D. Floriot,et al.  43W, 52% PAE X-Band AlGaN/GaN HEMTs MMIC amplifiers , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[20]  J.D. Cressler,et al.  A High-Gain, Two-Stage, X-Band SiGe Power Amplifier , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[21]  Reinhard Feger,et al.  A Fully-Integrated 77-GHz UWB Pseudo-Random Noise Radar Transceiver With a Programmable Sequence Generator in SiGe Technology , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Son V. Nghiem,et al.  Radar remote sensing of Great Lakes ice cover , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[23]  Xuexing Chen,et al.  Potential and status of high-resolution remote sensing information applied in urban planning in China , 2009, 2009 Joint Urban Remote Sensing Event.

[24]  Y. Chen,et al.  Ultra-Low-Power X-band SiGe HBT Low-Noise Amplifiers , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[25]  J.-M. Le Caillec SAR Remote Sensing Analysis of the Sea Surface by Polynomial Filtering [Applications Corner] , 2007, IEEE Signal Processing Magazine.

[26]  Martti Hallikainen,et al.  Application of Ers-1 Sar Data to Remote Sensing of Snow in Finland , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[27]  Huy Nguyen,et al.  SAR imaging of a forested area based on a coherent 3-D model of wave scattering: application to remote sensing of a hidden target in VHF band , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[28]  Wu Dan,et al.  Application of the Marine Oil Spill Surveillance by Satellite Remote Sensing , 2009, 2009 International Conference on Environmental Science and Information Application Technology.

[29]  Feng Ding,et al.  A new method for burnt scar mapping using spectral indices combined with Support Vector Machines , 2012, 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics).

[30]  Wang Ling Goh,et al.  Note: Modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonator with precise two-port Y-parameter characterizations. , 2016, The Review of scientific instruments.

[31]  Y. Mancuso Thales Components and Technologies for T/R Modules , 2008, 2008 European Microwave Integrated Circuit Conference.

[32]  Ying Zhang,et al.  13.2 A Ku-band 260mW FMCW synthetic aperture radar TRX with 1.48GHz BW in 65nm CMOS for micro-UAVs , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[33]  Jaeha Kim,et al.  13.1 A 940MHz-bandwidth 28.8µs-period 8.9GHz chirp frequency synthesizer PLL in 65nm CMOS for X-band FMCW radar applications , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[34]  Feng Zhao,et al.  An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology , 2014, IEEE Journal of Solid-State Circuits.

[35]  Yuanjin Zheng,et al.  A 0.18/spl mu/m CMOS Dual-Band UWB Transceiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[36]  Kristoffer Andersson,et al.  Highly linear 1–3 GHz GaN HEMT low-noise amplifier , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[37]  Tobias Klein,et al.  A Low-Power Wideband Transmitter Front-End Chip for 80 GHz FMCW Radar Systems With Integrated 23 GHz Downconverter VCO , 2012, IEEE Journal of Solid-State Circuits.

[38]  Yeong-Her Wang,et al.  An X-Band High-Power and High-PAE PHEMT MMIC Power Amplifier for Pulse and CW Operation , 2008, IEEE Microwave and Wireless Components Letters.

[39]  Peter Reinartz,et al.  Interpretation of SAR images in urban areas using simulated optical and radar images , 2011, 2011 Joint Urban Remote Sensing Event.

[40]  Robert B. Staszewski,et al.  A 56.4-to-63.4 GHz Multi-Rate All-Digital Fractional-N PLL for FMCW Radar Applications in 65 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[41]  Chen Zhongxin,et al.  A review of crop identification and area monitoring based on SAR image , 2012, 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics).

[42]  Yuji Okada,et al.  Hardware performance of L-band SAR system onboard ALOS-2 , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[43]  Yong Wang,et al.  Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations. , 2016, The Review of scientific instruments.

[44]  Xiang Guan,et al.  A 24-GHz CMOS front-end , 2004, IEEE Journal of Solid-State Circuits.

[45]  Jean-Marc Le Caillec SAR Remote Sensing Analysis of the Sea Surface by Polynomial Filtering [Applications Corner] , 2007, IEEE Signal Process. Mag..

[46]  Yong Wang,et al.  A modified PiBVD model for Lamb wave resonator , 2016, 2016 International Symposium on Integrated Circuits (ISIC).

[47]  Xiaojun Yuan,et al.  A Low SIR Impulse-UWB Transceiver Utilizing Chirp FSK in 0.18 $\mu{\rm m}$ CMOS , 2010, IEEE Journal of Solid-State Circuits.

[48]  Yong Wang,et al.  A 9% power efficiency 121-to-137GHz phase-controlled push-push frequency quadrupler in 0.13μm SiGe BiCMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.