On large Toeplitz band matrices with an uncertain block

Abstract This paper investigates the possible spectra of large, finite dimensional Toeplitz band matrices with perturbations (impurities, uncertainties) in the upper-left m × m block. The main result shows that the asymptotic spectrum of such a matrix is not affected by these perturbations, provided they have sufficiently small norm. This follows from analysis of structured pseudospectra (structured spectral value sets). In contrast, for typical non-Hermitian Toeplitz matrices there exist certain rank-one perturbations of arbitrarily small norm that move an eigenvalue away from the asymptotic spectrum in the large-dimensional limit.

[1]  Darrell Schmidt,et al.  EIGENVALUES OF TRIDIAGONAL PSEUDO-TOEPLITZ MATRICES , 1999 .

[2]  Diederich Hinrichsen,et al.  Spectral value sets: a graphical tool for robustness analysis , 1993 .

[3]  Spectral curves of non-hermitian hamiltonians , 1997, cond-mat/9710040.

[4]  E. Gallestey,et al.  Spectral value sets of closed linear operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[6]  L. Trefethen,et al.  Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .

[7]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[8]  Mark Embree,et al.  Infinite Toeplitz and Laurent matrices with localized impurities , 2002 .

[9]  David R. Nelson,et al.  NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.

[10]  Baruch Cahlon,et al.  Stepwise stability for the heat equation with a nonlocal constraint , 1995 .

[11]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[12]  Frank Spitzer,et al.  The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .

[13]  L. Trefethen Spectra and pseudospectra , 2005 .

[14]  Mark Ainsworth,et al.  The graduate student's guide to numerical analysis '98 : lecture notes from the VIII EPSRC Summer School in Numerical Analysis , 1999 .

[15]  Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[17]  Richard M. Beam,et al.  The Asymptotic Spectra of Banded Toeplitz and Quasi-Toeplitz Matrices , 1993, SIAM J. Sci. Comput..

[18]  V. I. Sokolov,et al.  The spectra of large Toeplitz band matrices with a randomly perturbed entry , 2003, Math. Comput..

[19]  L. Trefethen,et al.  Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.

[20]  Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  I. Goldsheid,et al.  DISTRIBUTION OF EIGENVALUES IN NON-HERMITIAN ANDERSON MODELS , 1997, cond-mat/9707230.