ECNU: Expression- and Message-level Sentiment Orientation Classification in Twitter Using Multiple Effective Features

Microblogging websites (such as Twitter, Facebook) are rich sources of data for opinion mining and sentiment analysis. In this paper, we describe our approaches used for sentiment analysis in twitter (task 9) organized in SemEval 2014. This task tries to determine whether the sentiment orientations conveyed by the whole tweets or pieces of tweets are positive, negative or neutral. To solve this problem, we extracted several simple and basic features considering the following aspects: surface text, syntax, sentiment score and twitter characteristic. Then we exploited these features to build a classifier using SVM algorithm. Despite the simplicity of features, our systems rank above the average.

[1]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[2]  Giacomo Berardi,et al.  ISTI@TREC Microblog Track 2011: Exploring the Use of Hashtag Segmentation and Text Quality Ranking , 2011, TREC.

[3]  Man Lan,et al.  ECNUCS: A Surface Information Based System Description of Sentiment Analysis in Twitter in the SemEval-2013 (Task 2) , 2013 .

[4]  Carina Silberer,et al.  Proceedings of the International Conference on Language Resources and Evaluation (LREC) , 2008 .

[5]  Saif Mohammad,et al.  NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets , 2013, *SEMEVAL.

[6]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[7]  Lee Becker,et al.  AVAYA: Sentiment Analysis on Twitter with Self-Training and Polarity Lexicon Expansion , 2013, *SEMEVAL.

[8]  Apoorv Agarwal,et al.  End-to-End Sentiment Analysis of Twitter Data , 2012 .

[9]  Janyce Wiebe,et al.  Articles: Recognizing Contextual Polarity: An Exploration of Features for Phrase-Level Sentiment Analysis , 2009, CL.

[10]  Junlan Feng,et al.  Robust Sentiment Detection on Twitter from Biased and Noisy Data , 2010, COLING.

[11]  Arzucan Özgür,et al.  BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets , 2013, *SEMEVAL.

[12]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[13]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[14]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[15]  Lan Man,et al.  ECNUCS: A Surface Information Based System Description of Sentiment Analysis in Twitter in the SemEval-2013 (Task 2) , 2013, *SEMEVAL.

[16]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[17]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[18]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[19]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.