The colloidal tool-box approach for fuel cell catalysts: Systematic study of perfluorosulfonate-ionomer impregnation and Pt loading

[1]  J. Kirkensgaard,et al.  Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts – The influence of the platinum to carbon ratio on the degradation rate , 2014 .

[2]  W. Goddard,et al.  Dramatic increase in the oxygen reduction reaction for platinum cathodes from tuning the solvent dielectric constant. , 2014, Angewandte Chemie.

[3]  M. Bäumer,et al.  The particle proximity effect: from model to high surface area fuel cell catalysts , 2014 .

[4]  Steven Holdcroft,et al.  Fuel Cell Catalyst Layers: A Polymer Science Perspective , 2014 .

[5]  M. Arenz,et al.  Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: A Raman study , 2013 .

[6]  R. Jinnouchi,et al.  Increase in adsorptivity of sulfonate anions on Pt (111) surface with drying of ionomer , 2013 .

[7]  M. Arenz,et al.  The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. , 2013, Nature materials.

[8]  J. Kirkensgaard,et al.  On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts , 2013 .

[9]  S. Kocha,et al.  Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies , 2013 .

[10]  A. Ohma,et al.  An in situ technique for analyzing ionomer coverage in catalyst layers , 2013 .

[11]  M. Bäumer,et al.  Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies. , 2013, Physical chemistry chemical physics : PCCP.

[12]  K. Kudo,et al.  Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell , 2013 .

[13]  Chi-Yeong Ahn,et al.  Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells , 2013 .

[14]  B. Pollet,et al.  Nafion®-stabilised Pt/C electrocatalysts with efficient catalyst layer ionomer distribution for proton exchange membrane fuel cells , 2012 .

[15]  Ke Ke,et al.  An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C , 2012 .

[16]  A. Manthiram,et al.  Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC , 2012 .

[17]  K. Okazaki,et al.  Influence of Nafion® film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell , 2010 .

[18]  H. Yano,et al.  New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions , 2010 .

[19]  M. Arenz,et al.  AuPt core-shell nanocatalysts with bulk Pt activity , 2010 .

[20]  K. Kudo,et al.  Analysis of Oxygen Dissolution Rate from Gas Phase into Nafion Surface and Development of an Agglomerate Model , 2010 .

[21]  Karren L. More,et al.  Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies , 2010 .

[22]  N. Marković,et al.  Oxygen reduction reaction at three-phase interfaces. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Kourosh Malek,et al.  On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. , 2010, ACS applied materials & interfaces.

[24]  Jun-Ho Lee,et al.  Synthesis of platinum nanoparticles using electrostatic stabilization and cluster duplication of perfluorinated ionomer , 2009 .

[25]  Sean James Ashton,et al.  An Electrochemical Cell Configuration Incorporating an Ion Conducting Membrane Separator between Reference and Working Electrode , 2009, International Journal of Electrochemical Science.

[26]  M. Arenz,et al.  Analysis of the Impact of Individual Glass Constituents on Electrocatalysis on Pt Electrodes in Alkaline Solution , 2008 .

[27]  M. Arenz,et al.  Measurement of oxygen reduction activities via the rotating disc electrode method : from Pt model surfaces to carbon-supported high surface area catalysts. , 2008 .

[28]  S. Jiang,et al.  Synthesis and characterization of Nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells , 2006 .

[29]  E. Higuchi,et al.  Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode , 2005 .

[30]  Jiawen Ren,et al.  Metal Nanoclusters Stabilized with Simple Ions and Solvents—Promising Building Blocks for Future Catalysts , 2005 .

[31]  G. Sasikumar,et al.  Optimum Nafion content in PEM fuel cell electrodes , 2004 .

[32]  Karren L. More,et al.  Porosimetry of MEAs Made by “Thin Film Decal” Method and Its Effect on Performance of PEFCs , 2004 .

[33]  E. Antolini,et al.  Review in Applied Electrochemistry. Number 54 Recent Developments in Polymer Electrolyte Fuel Cell Electrodes , 2004 .

[34]  J. Song,et al.  Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method , 2001 .

[35]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .

[36]  Jiawen Ren,et al.  Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media , 2000 .

[37]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[38]  Sanjeev Mukerjee,et al.  Effects of Nafion impregnation on performances of PEMFC electrodes , 1998 .

[39]  H. Gasteiger,et al.  Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration , 1998 .

[40]  Makoto Uchida,et al.  Effects of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer‐Electrolyte Fuel Cells , 1996 .

[41]  Edson A. Ticianelli,et al.  Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells , 1996 .

[42]  Yuko Aoyama,et al.  Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE‐Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells , 1995 .

[43]  A. Ohta,et al.  Influences of Both Carbon Supports and Heat‐Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol , 1995 .

[44]  G. Maggio,et al.  Solid polymer electrolyte fuel cell (SPEFC) research and development at the institute CNR-TAE of messina , 1994 .

[45]  H. Gasteiger,et al.  CO Electrooxidation on Well-Characterized Pt-Ru Alloys. , 1994 .

[46]  N. Giordano,et al.  Nafion Distribution in Gas Diffusion Electrodes for Solid‐Polymer‐Electrolyte‐Fuel‐Cell Applications , 1992 .

[47]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[48]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[49]  Jason W. Zack,et al.  Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique I. Impact of Impurities, Measurement Protocols and Applied Corrections , 2015 .

[50]  M. Bäumer,et al.  Probing Degradation by IL-TEM: The Influence of Stress Test Conditions on the Degradation Mechanism , 2013 .

[51]  M. Arenz,et al.  Impact of Glass Corrosion on the Electrocatalysis on Pt Electrodes in Alkaline Electrolyte , 2008 .

[52]  G. Squadrito,et al.  Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance , 2001 .

[53]  Hubert A. Gasteiger,et al.  Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys , 1994 .