Sensor Fusion Based Obstacle Detection/Classification for Active Pedestrian Protection System

This paper proposes a sensor fusion based obstacle detection/classification system for active pedestrian protection system. At the front-end of vehicle, one laser scanner and one camera is installed. Clustering and tracking of range data from laser scanner generate obstacle candidates. Vision system classifies the candidates into three categories: pedestrian, vehicle, and other. Gabor filter bank extracts the feature vector of candidate image. The obstacle classification is implemented by combining two classifiers with the same architecture: support vector machine for pedestrian and vehicle. Obstacle detection system recognizing the class can actively protect pedestrian while reducing false positive rate.

[1]  S Milch,et al.  PEDESTRIAN DETECTION WITH RADAR AND COMPUTER VISION , 2001 .

[2]  T. Tatschke,et al.  Detection of Road Users in Fused Sensor Data Streams for Collision Mitigation , 2006 .

[3]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[5]  Zehang Sun,et al.  On-road vehicle detection using evolutionary Gabor filter optimization , 2005, IEEE Transactions on Intelligent Transportation Systems.

[6]  A. Zelinsky,et al.  3D vision sensing for improved pedestrian safety , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[7]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[8]  Dariu Gavrila,et al.  Sensor-Based Pedestrian Protection , 2001, IEEE Intell. Syst..

[9]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Dariu Gavrila,et al.  Pedestrian Detection from a Moving Vehicle , 2000, ECCV.

[11]  Akira Hattori,et al.  Development of Forward Collision Warning System using the Driver Behavioral Information , 2006 .

[12]  Hideki Hashimoto,et al.  Intelligent Night Vision System: Nighttime Pedestrian Detection Assistance System , 2005 .

[13]  J. Scholz,et al.  Reliable pedestrian protection using laserscanners , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[14]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  W. von Seelen,et al.  Walking pedestrian recognition , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[16]  Massimo Bertozzi,et al.  Shape-based pedestrian detection , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[17]  Marc-Michael Meinecke,et al.  SAVE-U: First Experiences with a Pre-Crash System for Enhancing Pedestrian Safety , 2005 .

[18]  Azim Eskandarian,et al.  Research advances in intelligent collision avoidance and adaptive cruise control , 2003, IEEE Trans. Intell. Transp. Syst..