Electron acceleration in laboratory-produced turbulent collisionless shocks

[1]  P. Chang,et al.  Filamentation instability of counterstreaming laser-driven plasmas. , 2013, Physical review letters.

[2]  R. P. Drake,et al.  Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas , 2012, Nature Physics.

[3]  Burton D. Fried,et al.  Mechanism for Instability of Transverse Plasma Waves , 1959 .

[4]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[5]  T. Kato,et al.  Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave , 2015, Science.

[6]  F. S. Tsung,et al.  One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations , 2008, 0810.2460.

[7]  T. C. Sangster,et al.  Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields. , 2019, Physical review letters.

[8]  R. Treumann Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks , 2009 .

[9]  B. Trubnikov Particle Interactions in a Fully Ionized Plasma , 1965 .

[10]  M. Tarisien,et al.  Response functions of imaging plates to photons, electrons and 4He particles. , 2013, The Review of scientific instruments.

[11]  P. Giommi,et al.  Detection of the Characteristic Pion-Decay Signature in Supernova Remnants , 2013, Science.

[12]  Roger D. Blandford,et al.  Particle acceleration at astrophysical shocks: A theory of cosmic ray origin , 1987 .

[13]  H. J. Voelk,et al.  Magnetic field amplification in Tycho and other shell-type supernova remnants , 2005 .

[14]  D. Lamb,et al.  Electron acceleration by wave turbulence in a magnetized plasma , 2018, Nature Physics.

[15]  R. P. Drake,et al.  Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. , 2017, Physical review letters.

[16]  N. Woolsey,et al.  High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers , 2008 .

[17]  A. Bhattacharjee,et al.  Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. , 2016, Physical review letters.

[18]  A. Hillas The Origin of Ultra-High-Energy Cosmic Rays , 1984 .

[19]  R. P. Drake,et al.  Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows , 2013, Nature Physics.

[20]  H. Takabe,et al.  Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas , 2008, 0804.0052.

[21]  Wojciech Rozmus,et al.  Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks , 2011 .

[22]  M. Hoshino,et al.  Nonthermal Electrons at High Mach Number Shocks: Electron Shock Surfing Acceleration , 2002, astro-ph/0203073.

[23]  R. Fonseca,et al.  Long-time evolution of magnetic fields in relativistic GRB shocks , 2004, astro-ph/0409382.

[24]  G. J. Williams,et al.  Calibration of proton dispersion for the NIF electron positron proton spectrometer (NEPPS) for short-pulse laser experiments on the NIF ARC. , 2018, The Review of scientific instruments.

[25]  R. Z. Sagdeev,et al.  Cooperative Phenomena and Shock Waves in Collisionless Plasmas , 1966 .

[26]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[27]  P. Lindqvist,et al.  Electron Scattering by Low-frequency Whistler Waves at Earth’s Bow Shock , 2017, The Astrophysical Journal.

[28]  W. Halverson Bremsstrahlung photon emission rate from Maxwellian plasmas , 1972 .

[29]  D. Ryutov,et al.  Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field , 2012 .

[30]  F. Fiuza,et al.  Disruption of Current Filaments and Isotropization of the Magnetic Field in Counterstreaming Plasmas. , 2018, Physical review letters.

[31]  A. Noutsos,et al.  High-energy particle acceleration in the shell of a supernova remnant , 2004, Nature.

[32]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[33]  R. Petre,et al.  Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006 , 1995, Nature.

[34]  Anatoly Spitkovsky,et al.  Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? , 2008, 0802.3216.