Lagrangian Approximations for Stochastic Reachability of a Target Tube

In this paper we examine how Lagrangian techniques can be used to compute underapproximations and overapproximation of the finite-time horizon, stochastic reach-avoid level sets for discrete-time, nonlinear systems. This approach is applicable for a generic nonlinear system without any convexity assumptions on the safe and target sets. We examine and apply our methods on the reachability of a target tube problem, a more generalized version of the finite-time horizon reach-avoid problem. Because these methods utilize a Lagrangian (set theoretic) approach, we eliminate the necessity to grid the state, input, and disturbance spaces allowing for increased scalability and faster computation. The methods scalability are currently limited by the computational requirements for performing the necessary set operations by current computational geometry tools. The primary trade-off for this improved extensibility is conservative approximations of actual stochastic reach set. We demonstrate these methods on several examples including the standard double-integrator, a chain of integrators, and a 4-dimensional space vehicle rendezvous docking problem.

[1]  A. Girard,et al.  Reachability analysis of linear systems using support functions , 2010 .

[2]  Mervin E. Muller,et al.  A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.

[3]  John Lygeros,et al.  A stochastic reach-avoid problem with random obstacles , 2011, HSCC '11.

[4]  John Lygeros,et al.  The Linear Programming Approach to Reach-Avoid Problems for Markov Decision Processes , 2014, J. Artif. Intell. Res..

[5]  David Q. Mayne,et al.  Reachability analysis of discrete-time systems with disturbances , 2006, IEEE Transactions on Automatic Control.

[6]  Daniel Hug,et al.  OPERATIONS BETWEEN SETS IN GEOMETRY , 2012, 1205.4327.

[7]  Meeko M. K. Oishi,et al.  Underapproximation of reach-avoid sets for discrete-time stochastic systems via Lagrangian methods , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[8]  Luca Cardelli,et al.  Efficiency through uncertainty: scalable formal synthesis for stochastic hybrid systems , 2019, HSCC.

[9]  Ian M. Mitchell,et al.  Lagrangian methods for approximating the viability kernel in high-dimensional systems , 2013, Autom..

[10]  Ian M. Mitchell,et al.  The continual reachability set and its computation using maximal reachability techniques , 2011, IEEE Conference on Decision and Control and European Control Conference.

[11]  Matthias Althoff,et al.  An Introduction to CORA 2015 , 2015, ARCH@CPSWeek.

[12]  John Lygeros,et al.  Approximate dynamic programming for stochastic reachability , 2013, 2013 European Control Conference (ECC).

[13]  Meeko M. K. Oishi,et al.  SReachTools: a MATLAB stochastic reachability toolbox , 2019, HSCC.

[14]  Vladimír Lacko,et al.  On decompositional algorithms for uniform sampling from n-spheres and n-balls , 2010, J. Multivar. Anal..

[15]  Luigi Piroddi,et al.  Policy Search for the Optimal Control of Markov Decision Processes: A Novel Particle-Based Iterative Scheme , 2016, IEEE Transactions on Cybernetics.

[16]  Harold P. Benson,et al.  Multiplicative Programming Problems: Analysis and Efficient Point Search Heuristic , 1997 .

[17]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[18]  Meeko M. K. Oishi,et al.  Scalable Underapproximation for Stochastic Reach-Avoid Problem for High-Dimensional LTI Systems using Fourier Transforms , 2017, ArXiv.

[19]  Alberto Bemporad,et al.  Predictive Control for Linear and Hybrid Systems , 2017 .

[20]  Stanley Bak,et al.  HyLAA: A Tool for Computing Simulation-Equivalent Reachability for Linear Systems , 2017, HSCC.

[21]  Stephen P. Boyd,et al.  Variations and extension of the convex–concave procedure , 2016 .

[22]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[23]  John Lygeros,et al.  On the computational complexity and generalization properties of multi-stage and stage-wise coupled scenario programs , 2016, Syst. Control. Lett..

[24]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Meeko M. K. Oishi,et al.  Scalable Underapproximative Verification of Stochastic LTI Systems using Convexity and Compactness , 2018, HSCC.

[27]  Meeko M. K. Oishi,et al.  Stochastic reachability of a target tube: Theory and computation , 2018, Autom..

[28]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[29]  John Lygeros,et al.  A stochastic reachability framework for autonomous surveillance with pan-tilt-zoom cameras , 2011, IEEE Conference on Decision and Control and European Control Conference.

[30]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[31]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[32]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[33]  John Lygeros,et al.  Computational Approaches to Reachability Analysis of Stochastic Hybrid Systems , 2007, HSCC.

[34]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[35]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[36]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[37]  Antoine Girard,et al.  Reachability Analysis of Hybrid Systems Using Support Functions , 2009, CAV.

[38]  John Lygeros,et al.  Verification of discrete time stochastic hybrid systems: A stochastic reach-avoid decision problem , 2010, Autom..

[39]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[40]  John Lygeros,et al.  Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems , 2008, Autom..

[41]  Colas Le Guernic Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. (Calcul d'Atteignabilité des Systèmes Hybrides à Partie Continue Linéaire) , 2009 .

[42]  Meeko M. K. Oishi,et al.  Stochastic reachability for control of spacecraft relative motion , 2013, 52nd IEEE Conference on Decision and Control.

[43]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[44]  P. Saint-Pierre Approximation of the viability kernel , 1994 .

[45]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.