High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperatures

The microwave properties of a crystalline sapphire dielectric whispering gallery mode resonator have been measured at very low excitation strength (E/ℏω≈1) and low temperatures (T≈30 mK). The measurements were sensitive enough to observe saturation due to a highly detuned electron spin resonance, which limited the loss tangent of the material to about 2×10−8 measured at 13.868 and 13.259 GHz. Small power dependent frequency shifts were also measured which correspond to an added magnetic susceptibility of order 10−9. This work shows that quantum limited microwave resonators with Q-factors >108 are possible with the implementation of a sapphire whispering gallery mode system.

[1]  Michael E. Tobar,et al.  Resonant frequencies of higher order modes in cylindrical anisotropic dielectric resonators , 1991 .

[2]  Michael E. Tobar,et al.  Dielectric frequency - temperature- compensated microwave whispering-gallery-mode resonators , 1997 .

[3]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[4]  M. Weides,et al.  Improving the Coherence Time of Superconducting Coplanar Resonators , 2009, 0909.0547.

[5]  Michael E. Tobar,et al.  Anisotropic complex permittivity measurements of mono-crystalline rutile between 10 and 300 K , 1998 .

[6]  M. Tobar,et al.  Low phase-noise sapphire crystal microwave oscillators: current status , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  David Blair,et al.  Phase noise analysis of the sapphire loaded superconducting niobium cavity oscillator , 1994 .

[8]  H. Paik,et al.  Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits , 2009, 0908.2948.

[9]  Mohamad Susli,et al.  Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators. , 2005, Physical review letters.

[10]  M. Weides,et al.  Minimal resonator loss for circuit quantum electrodynamics , 2010, 1005.0408.

[11]  J. Krupka,et al.  Frequency-temperature compensation in Ti(3+) and Ti(4+ ) doped sapphire whispering gallery mode resonators. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[12]  Giorgio Santarelli,et al.  Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser , 2010 .

[13]  Michael Edmund Tobar,et al.  Proposal for a new test of the time independence of the fine structure constant α using orthogonally polarized whispering gallery modes in a single sapphire resonator , 2003 .

[14]  Michael E. Tobar,et al.  Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures , 1999 .

[15]  D. Blair,et al.  PARAMETRIC BACK-ACTION EFFECTS IN A HIGH-Q CYROGENIC SAPPHIRE TRANSDUCER , 1996 .

[16]  V. Giordano,et al.  Measurement of the fundamental thermal noise limit in a cryogenic sapphire frequency standard using bimodal maser oscillations. , 2008, Physical review letters.

[17]  V. Giordano,et al.  Gyrotropic paramagnetic properties of Fe3+ ions in a high-Q Whispering gallery mode sapphire resonator , 2009, 2010 IEEE International Frequency Control Symposium.

[18]  M. Tobar Applications of low-temperature microwave techniques to the measurement of gravity waves and quantum measurement of macroscopic systems , 2000 .

[19]  Michael E. Tobar,et al.  Amplification process in a high-Q cryogenic whispering gallery mode sapphire Fe3 + maser , 2010 .

[20]  T. Duty,et al.  Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high-Q factor whispering gallery modes , 2010, 1009.0665.

[21]  J. Krupka,et al.  TEMPERATURE DEPENDENCE OF TI3+ DOPED SAPPHIRE WHISPERING GALLERY MODE RESONATOR , 1998 .

[22]  D. Phillips,et al.  Improved Constraints on Isotropic Shift and Anisotropies of the Speed of Light Using Rotating Cryogenic Sapphire Oscillators , 2010, 1006.1376.

[23]  A. Tzalenchuk,et al.  Properties of superconducting planar resonators at millikelvin temperatures , 2009, 0905.1481.

[24]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[25]  Michael E. Tobar,et al.  Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials , 1999 .

[26]  J. Krupka,et al.  Discovery of Bragg confined hybrid modes with high Q factor in a hollow dielectric resonator , 2007, 0709.2226.

[27]  P. L. Stanwix,et al.  Cryogenic sapphire oscillator with exceptionally high long-term frequency stability , 2006 .

[28]  Michael S. Allman,et al.  Low-loss superconducting resonant circuits using vacuum-gap-based microwave components , 2010 .

[29]  D. Blair,et al.  Sapphire test-masses for measuring the standard quantum limit and achieving quantum non-demolition , 1997 .

[30]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .