Network Analysis of Photovoltaic Energy Conversion

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (represented by a master equation in the space of the different system states) has been constructed. Such network representation allows one to decompose the steady state dynamics into cycles, characterized by their cycle affinities. Both the maximum achievable efficiency and the open-circuit voltage of the device are obtained in the zero affinity limit. This method is applied to analyze a microscopic model for a bulk heterojunction organic solar cell that includes the essential optical and interfacial electronic processes that characterize this system, leading to an explicit expression for the theoretical efficiency limit in such systems. In particular, the deviation from Carnot' se fficiency associated with the exciton binding energy is quantified.

[1]  Nonlinear hopping transport in ring systems and open channels. , 2009, Physical chemistry chemical physics : PCCP.

[2]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[3]  Thomas Kirchartz,et al.  Detailed balance and reciprocity in solar cells , 2008 .

[4]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[5]  P. Gaspard,et al.  CHEMOMECHANICAL COUPLING AND STOCHASTIC THERMODYNAMICS OF THE F1-ATPase MOLECULAR MOTOR WITH AN APPLIED EXTERNAL TORQUE , 2010 .

[6]  N. Camaioni,et al.  Pushing the Envelope of the Intrinsic Limitation of Organic Solar Cells. , 2013, The journal of physical chemistry letters.

[7]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[8]  C. Van den Broeck,et al.  Efficiency at maximum power for classical particle transport. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  X. Zhu,et al.  How to Draw Energy Level Diagrams in Excitonic Solar Cells. , 2014, The journal of physical chemistry letters.

[10]  Adrian J Mulholland,et al.  Taking Ockham's razor to enzyme dynamics and catalysis. , 2012, Nature chemistry.

[11]  C. Van den Broeck,et al.  Efficiency of isothermal molecular machines at maximum power. , 2012, Physical review letters.

[12]  A. Kahn,et al.  Photovoltaic efficiency limits and material disorder , 2012 .

[13]  N. S. Sariciftci,et al.  Efficiency of bulk-heterojunction organic solar cells , 2013, Progress in polymer science.

[14]  Marlan O Scully,et al.  Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. , 2010, Physical review letters.

[15]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[16]  Abraham Nitzan,et al.  Heterojunction organic photovoltaic cells as molecular heat engines: A simple model for the performance analysis , 2011, 1107.0924.

[17]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[18]  R. Elber,et al.  Early events in helix unfolding under external forces: a milestoning analysis. , 2012, The journal of physical chemistry. B.

[19]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[20]  H Ouerdane,et al.  Efficiency at maximum power of thermally coupled heat engines. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[22]  Julian Gonzalez-Ayala,et al.  Connection between maximum-work and maximum-power thermal cycles. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  B. Thompson,et al.  Polymer-Based Solar Cells: State-of-the-Art Principles for the Design of Active Layer Components , 2011 .

[24]  James Kirkpatrick,et al.  Factors limiting the efficiency of molecular photovoltaic devices , 2004 .

[25]  P. Baruch,et al.  A two‐level system as a model for a photovoltaic solar cell , 1985 .

[26]  M. Green,et al.  Time-asymmetric photovoltaics. , 2012, Nano letters.

[27]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[28]  Thomas Kirchartz,et al.  Efficiency Limits of Organic Bulk Heterojunction Solar Cells , 2009 .

[29]  A. Nitzan,et al.  Unidirectional hopping transport of interacting particles on a finite chain. , 2010, The Journal of chemical physics.

[30]  H. Hooyberghs,et al.  Efficiency at maximum power of a chemical engine. , 2013, The Journal of chemical physics.

[31]  Massimiliano Esposito,et al.  Efficiency at maximum power of low-dissipation Carnot engines. , 2010, Physical review letters.

[32]  Jean-Luc Brédas,et al.  Molecular understanding of organic solar cells: the challenges. , 2009, Accounts of Chemical Research.

[33]  F. Castro,et al.  Organic photovoltaics: principles and techniques for nanometre scale characterization , 2010, Nanotechnology.

[34]  Alexander Lukyanov,et al.  Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors , 2011, Journal of chemical theory and computation.

[35]  Efficiency at maximum power of a heat engine working with a two-level atomic system. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  K. Okuda,et al.  Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source. , 2013, Physical review letters.

[37]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[38]  Yang Wang,et al.  Efficiency at maximum power output of linear irreversible Carnot-like heat engines. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[40]  Philipp Maass,et al.  Classical driven transport in open systems with particle interactions and general couplings to reservoirs. , 2011, Physical review letters.

[41]  B. Schmittmann,et al.  Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states , 2007 .

[42]  Tom Markvart,et al.  Solar cell as a heat engine: energy–entropy analysis of photovoltaic conversion , 2008 .

[43]  J. Schnakenberg Network theory of microscopic and macroscopic behavior of master equation systems , 1976 .

[44]  Mark A. Ratner,et al.  Two-dimensional model for polymer-based photovoltaic cells: Numerical simulations of morphology effects , 2004 .

[45]  Adam P. Willard,et al.  Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. , 2013, Nature materials.

[46]  Stephen R. Forrest,et al.  Thermodynamic efficiency limit of excitonic solar cells , 2011 .

[47]  Massimiliano Esposito,et al.  Universality of efficiency at maximum power. , 2009, Physical review letters.

[48]  Chakra Chennubhotla,et al.  Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics , 2007, J. Comput. Biol..

[49]  Zhaoqi Wu,et al.  Efficiency at maximum power output of quantum heat engines under finite-time operation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Massimiliano Esposito,et al.  Reaching optimal efficiencies using nanosized photoelectric devices , 2009, 0907.4189.

[51]  Hao Wang,et al.  Performance analysis and optimum criteria of a quantum dot engine with two discrete energy levels , 2012 .

[52]  Sean E. Shaheen,et al.  Pathways to a New Efficiency Regime for Organic Solar Cells , 2012 .

[53]  Bernard Kippelen,et al.  Critical Interfaces in Organic Solar Cells and Their Influence on the Open‐Circuit Voltage , 2010 .

[54]  P. Maass,et al.  Time-dependent density functional theory for driven lattice gas systems with interactions , 2010, 1011.3415.

[55]  D. Andrieux,et al.  Fluctuation theorem and Onsager reciprocity relations. , 2004, The Journal of chemical physics.

[56]  M. Timme,et al.  Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Sumiyoshi Abe Maximum-power quantum-mechanical Carnot engine. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  P. Landsberg,et al.  Thermodynamic energy conversion efficiencies , 1980 .

[59]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[60]  A. Nitzan,et al.  Multiple state representation scheme for organic bulk heterojunction solar cells: A novel analysis perspective , 2013, 1311.6495.

[61]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[62]  P. Würfel,et al.  Physics of solar cells : from basic principles to advanced concepts , 2009 .

[63]  A. Kirk Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells. , 2011, Physical review letters.

[64]  J. Nelson The physics of solar cells , 2003 .

[65]  T. L. Hill Studies in irreversible thermodynamics, vii. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Armen E Allahverdyan,et al.  Carnot cycle at finite power: attainability of maximal efficiency. , 2013, Physical review letters.

[67]  Upendra Harbola,et al.  Thermodynamics of quantum heat engines , 2013 .

[68]  Y. Yoshida,et al.  Efficiency limit analysis of organic solar cells: model simulation based on vanadyl phthalocyanine/C60 planar junction cell , 2013 .

[69]  D. Andrieux,et al.  Fluctuation Theorem for Currents and Schnakenberg Network Theory , 2005, cond-mat/0512254.

[70]  C. Deibel,et al.  Organic Solar Cell Efficiencies Under the Aspect of Reduced Surface Recombination Velocities , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  I. Samuel,et al.  Discrete hopping model of exciton transport in disordered media , 2005 .

[72]  Y. Yoshida,et al.  Detailed balance limit of power conversion efficiency for organic photovoltaics , 2013 .

[73]  D. C. Agrawal,et al.  A finite speed Curzon–Ahlborn engine , 2009 .

[74]  M. Stutzmann,et al.  Thermodynamic Efficiency Limit of Molecular Donor‐Acceptor Solar Cells and its Application to Diindenoperylene/C60‐Based Planar Heterojunction Devices , 2012 .

[75]  T. L. Hill Studies in irreversible thermodynamics. IV. Diagrammatic representation of steady state fluxes for unimolecular systems. , 1966, Journal of theoretical biology.

[76]  Wolfgang Brütting,et al.  Physics of Organic Semiconductors: Second Edition , 2005 .