Cerebral small vessel disease genomics and its implications across the lifespan

N. Eriksson | P. Matthews | M. Fornage | I. Deary | R. Mägi | E. Mihailov | D. Strachan | M. Daly | T. Lehtimäki | H. Stefánsson | A. Ingason | S. Steinberg | T. Werge | K. Stefánsson | C. Webber | E. Boerwinkle | V. Salomaa | C. DeCarli | Y. Kamatani | Y. Okada | B. Neale | P. Ridker | D. Chasman | S. Ring | D. Bennett | V. Gudnason | Kazumichi Yoshida | Albert Vernon Smith | A. Folsom | C. Lewis | P. Reitsma | S. Kardia | M. Bastin | B. Mazoyer | D. Knopman | L. Zago | L. Petit | T. Meitinger | O. Lopez | B. Psaty | P. Kraft | R. Bryan | J. Dartigues | P. Schofield | B. Penninx | W. Niessen | M. Kals | K. Pärn | A. Palotie | A. Metspalu | T. Esko | P. Palta | G. Montgomery | L. Milani | D. Trégouët | K. Taylor | J. Rotter | P. Sachdev | J. Trollor | H. Brodaty | W. Wen | H. Suzuki | C. Sandor | M. Lathrop | M. van Buchem | D. Boomsma | J. Brody | M. Dichgans | M. Germain | P. Amouyel | P. Morange | D. Nyholt | J. Dupuis | Antti-Pekka Sarin | J. Hottenga | M. Beekman | T. Pers | C. V. van Duijn | M. Järvelin | L. Franke | N. Furlotte | A. Thalamuthu | Denis A. Evans | P. D. De Jager | S. Lindström | V. Srikanth | T. Kurth | A. Heath | C. Tzourio | R. Schmidt | H. Schmidt | J. Wardlaw | C. Berr | H. Grabe | A. Teumer | U. Völker | M. Wright | J. Kaprio | M. Vernooij | M. Ikram | A. Beiser | M. V. Valdés Hernández | M. Habes | K. Wittfeld | M. Kurki | J. Bis | X. Jian | J. Kwok | E. Slagboom | A. Aromaa | G. Davies | George Mcmahon | L. Quaye | Jennifer A. Smith | Wei Zhao | L. Cherkas | M. de Andrade | G. Eiriksdottir | L. Launer | P. Madden | S. Kardia | S. Seshadri | H. Warren | L. Yanek | E. Evangelou | S. Hagenaars | L. Rose | F. Rosendaal | P. Schreiner | S. Turner | K. Heikkilä | G. Davey Smith | Kai-How Farh | V. Anttila | Andrea Byrnes | F. Matsuda | J. Jukema | E. Loehrer | R. Bülow | A. Soumaré | M. Dörr | A. Tsuchida | N. Armstrong | Phil H. Lee | K. Mather | D. Ames | Hieab H. H. Adams | C. Satizabal | W. Longstreth | P. Nyquist | S. M. Maniega | Jie Huang | S. Miyamoto | J. Heit | M. Koiranen | T. Mosley | S. Debette | S. Trompet | D. Stott | Jiyang Jiang | R. Thomson | Hailiang Huang | Y. Tabara | N. Aggarwal | J. van der Grond | S. Sigurdsson | A. Mishra | E. Hofer | C. Nielsen | M. Männikkö | S. Basu | J. Zwart | A. Stubhaug | B. Winsvold | G. Terwindt | M. Wessman | M. Kallela | M. Kaunisto | E. Hämäläinen | S. Sakaue | T. Evans | R. Malik | M. Sargurupremraj | T. Freilinger | C. Kubisch | A. M. van den Maagdenberg | E. Stergiakouli | J. Wedenoja | L. Pedersen | M. Ikram | C. Sarnowski | G. Borck | Weihong Tang | K. Wiggins | P. Suchon | Jes Olesen | L. Weng | R. Monajemi | R. Gottesman | E. B. van den Akker | L. Ligthart | E. Cuenca-León | P. Gormley | C. Ran | M. Schürks | V. Artto | S. Vepsäläinen | Bertram Muller-Myhsok | H. Göbel | A. C. Belin | N. Saut | Y. Saba | H. D. de Haan | A. van Hylckama Vlieg | M. C. D. de Visser | D. Smadja | Jeanine Houwing-Duitermaat | C. Kabrhel | Marie-Gabrielle Duperron | A. Stam | R. McWhirter | J. Eriksson | G. Beaudet | K. Setoh | Jennifer A. Brody | M. Nagata | N. Terzikhan | N. Smith | Rajan B Kumar | Sabrina Schilling | M. Knol | Constance Bordes | Quentin Le Grand | S. Sidney | N. G. Martin | M. Muona | G. Legal | A. Esserlind | Padhraig Verneri Bendik S. Priit Tonu Tune H. Kai-How Ester Gormley Anttila Winsvold Palta Esko Pers | Z. Cader | A. Smith | M. Färkkilä | O. Raitakari | N. Martin | M. Ferrari | Stefan Schreiber | S. Gordon | D. Hinds | A. Hofman | Hideaki Suzuki | A. Uitterlinden | T. Spector | J. Buring | Philippe Mariza Saonli Claudine Jennifer A. Daniel I. Jean- Amouyel de Andrade Basu Berr Brody Chasm | Maria Gudlaug Hrafnsdottir | Anne Francke Christensen | Thomas Folkmann Hansen | M. D. de Visser | K. Farh | A. Smith | L. Rose | S. Turner | Julie E. Buring | A. Uitterlinden | Wei Zhao | C. V. van Duijn | D. Boomsma | B. Psaty | S. Kardia | M. Wright | Rajan B. Kumar | J. Houwing-Duitermaat | S. Gordon | Olli T. Raitakari | R. Schmidt | Mohamad Habes | Eline P. Slagboom | P. Amouyel | K. Taylor | Philippe Amouyel | D. Knopman | H. Adams | R. Schmidt | Wei Zhao | Bruce M. Psaty | Rebekah E. McWhirter | Cornelia M. van Duijn | M. A. Ikram | Grégoire Legal | Eline P. Slagboom | B. Psaty | G. Davies | Jennifer A. Smith | Paul M. Ridker | Cornelia M. Van Duijn | Salli Vepsäläinen | K. Taylor | Zameel M. Cader | D. Bennett | Paul M Ridker

[1]  Jackson T. Wright,et al.  Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions. , 2019, JAMA.

[2]  S. Larsson,et al.  Smoking and stroke: A mendelian randomization study , 2019, Annals of neurology.

[3]  L. Beckett,et al.  White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities , 2019, Alzheimer's & dementia.

[4]  Yukinori Okada,et al.  GREP: genome for REPositioning drugs , 2019, Bioinform..

[5]  J. Williamson,et al.  Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial , 2019, JAMA.

[6]  Hunna J. Watson,et al.  Genetic Identification of Cell Types Underlying Brain Complex Traits Yields Novel Insights Into the Etiology of Parkinson’s Disease , 2019, bioRxiv.

[7]  C. Sudlow,et al.  Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting , 2019, Neurology.

[8]  Mark E Bastin,et al.  Associations between vascular risk factors and brain MRI indices in UK Biobank , 2019, bioRxiv.

[9]  S. Larsson,et al.  Clinical Significance of Magnetic Resonance Imaging Markers of Vascular Brain Injury: A Systematic Review and Meta-analysis , 2019, JAMA neurology.

[10]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[11]  Thomas Kahan,et al.  [2018 ESC/ESH Guidelines for the management of arterial hypertension]. , 2019, Kardiologia polska.

[12]  S. Oparil,et al.  Intensive blood pressure lowering prevents mild cognitive impairment and possible dementia and slows development of white matter lesions in brain: the SPRINT Memory and Cognition IN Decreased Hypertension (SPRINT MIND) study , 2018, Blood pressure.

[13]  G. Lip,et al.  2018 ESC/ESH Guidelines for the management of arterial hypertension. , 2018, European heart journal.

[14]  Rikesh M. Rajani,et al.  Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats , 2018, Science Translational Medicine.

[15]  Jack Bowden,et al.  Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression , 2018, International journal of epidemiology.

[16]  Jesse D. Sengillo,et al.  HTRA1, an age‐related macular degeneration protease, processes extracellular matrix proteins EFEMP1 and TSP1 , 2018, Aging cell.

[17]  Andrew D. Johnson,et al.  Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes , 2018, Nature Genetics.

[18]  Agnieszka Sabisz,et al.  Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes—What Do We Know? , 2018, Front. Neurol..

[19]  Bernard Mazoyer,et al.  Burden of Dilated Perivascular Spaces, an Emerging Marker of Cerebral Small Vessel Disease, Is Highly Heritable , 2018, Stroke.

[20]  Danielle van Westen,et al.  Diffusion tensor imaging and tractography of the white matter in normal aging: The rate-of-change differs between segments within tracts. , 2018, Magnetic resonance imaging.

[21]  D. Holtzman,et al.  Alzheimer's Disease–Related Dementias Summit 2016: National research priorities , 2017, Neurology.

[22]  P. Goadsby,et al.  A Controlled Trial of Erenumab for Episodic Migraine , 2017, The New England journal of medicine.

[23]  J. Panhuis The Population Health Research Institute. , 2017, European heart journal.

[24]  Bogdan Pasaniuc,et al.  Local genetic correlation gives insights into the shared genetic architecture of complex traits , 2016, bioRxiv.

[25]  C. Sudlow,et al.  COL4A2 is associated with lacunar ischemic stroke and deep ICH: Meta-analyses among 21,500 cases and 40,600 controls , 2017, Neurology.

[26]  R. Mägi,et al.  Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution , 2017, Human molecular genetics.

[27]  K. Lunetta,et al.  Transethnic genome-wide scan identifies novel Alzheimer's disease loci , 2017, Alzheimer's & Dementia.

[28]  The Lancet Neurology Vascular disease and neurodegeneration: advancing together , 2017, The Lancet Neurology.

[29]  C. Pineau,et al.  Multiple signals at the extended 8p23 locus are associated with susceptibility to systemic lupus erythematosus , 2017, Journal of Medical Genetics.

[30]  J. Wardlaw,et al.  Early life risk factors for cerebrovascular disease , 2017, Neurology.

[31]  Szilard Voros,et al.  Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. , 2016, The New England journal of medicine.

[32]  G. Chauhan,et al.  Genetic Risk Factors for Ischemic and Hemorrhagic Stroke , 2016, Current Cardiology Reports.

[33]  F. de Leeuw,et al.  A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms , 2016, Annals of neurology.

[34]  Ian Marshall,et al.  Cerebral blood flow in small vessel disease: A systematic review and meta-analysis , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  B. Pasaniuc,et al.  Contrasting the genetic architecture of 30 complex traits from summary association data , 2016, bioRxiv.

[36]  Jon White,et al.  Selecting instruments for Mendelian randomization in the wake of genome-wide association studies , 2016, International journal of epidemiology.

[37]  Jean-François Dartigues,et al.  Edinburgh Research Explorer Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies , 2022 .

[38]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[39]  C. Moy,et al.  The Science of Vascular Contributions to Cognitive Impairment and Dementia (VCID): A Framework for Advancing Research Priorities in the Cerebrovascular Biology of Cognitive Decline , 2016, Cellular and Molecular Neurobiology.

[40]  Bixente Dilharreguy,et al.  Age-Related Modifications of Diffusion Tensor Imaging Parameters and White Matter Hyperintensities as Inter-Dependent Processes , 2016, Front. Aging Neurosci..

[41]  Kaitlin M. Fitzpatrick,et al.  Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke , 2016, Neurology.

[42]  M. Nelson,et al.  Perturbations of the cerebrovascular matrisome: A convergent mechanism in small vessel disease of the brain? , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[44]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[45]  Mulin Jun Li,et al.  Nature Genetics Advance Online Publication a N a Ly S I S the Support of Human Genetic Evidence for Approved Drug Indications , 2022 .

[46]  J. Bressler,et al.  Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium , 2015, Biological Psychiatry.

[47]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[48]  Lorna M. Lopez,et al.  Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI , 2015, Circulation. Cardiovascular genetics.

[49]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[50]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[51]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[52]  D. Norris,et al.  White matter integrity in small vessel disease is related to cognition , 2015, NeuroImage: Clinical.

[53]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[54]  T. Paus,et al.  White matter as a transport system , 2014, Neuroscience.

[55]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[56]  Lisa J. Martin,et al.  Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. , 2014, American journal of human genetics.

[57]  C. Scholz,et al.  Transcriptomics of Post-Stroke Angiogenesis in the Aged Brain , 2014, Front. Aging Neurosci..

[58]  P. Visscher,et al.  Advantages and pitfalls in the application of mixed-model association methods , 2014, Nature Genetics.

[59]  Jun S. Liu,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013 .

[60]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[61]  A. Brickman Contemplating Alzheimer’s Disease and the Contribution of White Matter Hyperintensities , 2013, Current Neurology and Neuroscience Reports.

[62]  Peter Kochunov,et al.  Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging , 2013, Proceedings of the National Academy of Sciences.

[63]  Buhm Han,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012 .

[64]  B. Trapp,et al.  Cortical remyelination: A new target for repair therapies in multiple sclerosis , 2012, Annals of neurology.

[65]  Evan Fletcher,et al.  Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study , 2012, The Lancet Neurology.

[66]  J. Schneider,et al.  Overview and findings from the religious orders study. , 2012, Current Alzheimer research.

[67]  J. Schneider,et al.  Overview and findings from the rush Memory and Aging Project. , 2012, Current Alzheimer research.

[68]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[69]  D. Glahn,et al.  Fractional anisotropy of water diffusion in cerebral white matter across the lifespan , 2012, Neurobiology of Aging.

[70]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[71]  Steven A. Carr,et al.  The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices , 2011, Molecular & Cellular Proteomics.

[72]  Stacey S. Cherny,et al.  Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets , 2011, Human Genetics.

[73]  Christian Gieger,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[74]  M. Fornage,et al.  Genome‐wide association studies of cerebral white matter lesion burden , 2011, Annals of neurology.

[75]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[76]  Boer,et al.  Genome-wide association studies of cerebral white matter lesion burden: the CHARGE Consortium , 2011 .

[77]  H. Markus,et al.  The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis , 2010, BMJ : British Medical Journal.

[78]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[79]  L. Westlye,et al.  Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. , 2010, Cerebral cortex.

[80]  R. Köhling,et al.  Basement membrane protein nidogen‐1 shapes hippocampal synaptic plasticity and excitability , 2009, Hippocampus.

[81]  K. Lunetta,et al.  Methods in Genetics and Clinical Interpretation Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Design of Prospective Meta-Analyses of Genome-Wide Association Studies From 5 Cohorts , 2010 .

[82]  S. Tsuji,et al.  Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. , 2009, The New England journal of medicine.

[83]  George Davey Smith,et al.  Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology , 2008, Statistics in medicine.

[84]  P. Gottschall,et al.  Versican and brevican are expressed with distinct pathology in neonatal hypoxic‐ischemic injury , 2008, Journal of neuroscience research.

[85]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[86]  J. Sundberg,et al.  Role of COL4A1 in small-vessel disease and hemorrhagic stroke. , 2006, The New England journal of medicine.

[87]  M. Woodward,et al.  Effects of Blood Pressure Lowering on Cerebral White Matter Hyperintensities in Patients With Stroke: The PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy , 2005, Circulation.

[88]  R. Holman,et al.  Vascular Factors and Risk of Dementia: Design of the Three-City Study and Baseline Characteristics of the Study Population , 2003, Neuroepidemiology.

[89]  P H Riegman,et al.  Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. , 1995, Oncogene.