Reinforcement distribution in fuzzy Q-learning

[1]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[2]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[3]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[4]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[5]  R.J. Williams,et al.  Reinforcement learning is direct adaptive optimal control , 1991, IEEE Control Systems.

[6]  Geoffrey E. Hinton,et al.  Feudal Reinforcement Learning , 1992, NIPS.

[7]  Hamid R. Berenji,et al.  A reinforcement learning--based architecture for fuzzy logic control , 1992, Int. J. Approx. Reason..

[8]  C. Anderson,et al.  Multigrid Q-learning , 1994 .

[9]  Andrew W. Moore,et al.  Generalization in Reinforcement Learning: Safely Approximating the Value Function , 1994, NIPS.

[10]  Michael I. Jordan,et al.  MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES , 1996 .

[11]  Michael I. Jordan,et al.  Reinforcement Learning with Soft State Aggregation , 1994, NIPS.

[12]  Gerald Tesauro,et al.  Temporal Difference Learning and TD-Gammon , 1995, J. Int. Comput. Games Assoc..

[13]  Hyung Suck Cho,et al.  A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning , 1995, IEEE Trans. Syst. Man Cybern..

[14]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[15]  Richard S. Sutton,et al.  Generalization in ReinforcementLearning : Successful Examples UsingSparse Coarse , 1996 .

[16]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[17]  Leemon C. Baird,et al.  Residual Algorithms: Reinforcement Learning with Function Approximation , 1995, ICML.

[18]  김재현,et al.  Fuzzy-Q learning , 1996 .

[19]  T. Horiuchi,et al.  Fuzzy interpolation-based Q-learning with continuous states and actions , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[20]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[21]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[22]  Andrea Bonarini Delayed Reinforcement , Fuzzy Q-Learning and Fuzzy Logic Controllers , 1996 .

[23]  John N. Tsitsiklis,et al.  Analysis of temporal-difference learning with function approximation , 1996, NIPS 1996.

[24]  Janusz Kacprzyk,et al.  Multistage Fuzzy Control: A Prescriptive Approach , 1997 .

[25]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[26]  Kyung-Whan Oh,et al.  A fuzzy reinforcement function for the intelligent agent to process vague goals , 2000, PeachFuzz 2000. 19th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.00TH8500).

[27]  Geoffrey J. Gordon Reinforcement Learning with Function Approximation Converges to a Region , 2000, NIPS.

[28]  Andrea Bonarini Evolutionary learning, reinforcement learning, and fuzzy rules for knowledge acquisition in agent-based systems , 2001 .

[29]  Stuart I. Reynolds Reinforcement Learning with Exploration , 2002 .

[30]  Meng Joo Er,et al.  Automatic generation of fuzzy inference systems by dynamic fuzzy Q-learning , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[31]  Meng Joo Er,et al.  Efficient implementation of dynamic fuzzy Q-learning , 2003, Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint.

[32]  Dongbing Gu,et al.  Learning fuzzy logic controller for reactive robot behaviours , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[33]  Chi-Kwong Li,et al.  An approach to tune fuzzy controllers based on reinforcement learning , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[34]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[35]  José del R. Millán,et al.  Continuous-Action Q-Learning , 2002, Machine Learning.

[36]  Peter Dayan,et al.  The convergence of TD(λ) for general λ , 1992, Machine Learning.

[37]  Meng Joo Er,et al.  Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[38]  Terrence J. Sejnowski,et al.  TD(λ) Converges with Probability 1 , 1994, Machine Learning.

[39]  Dongbing Gu,et al.  Accuracy based fuzzy Q-learning for robot behaviours , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[40]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[41]  Andrej Dobnikar,et al.  Adaptive Radial Basis Decomposition by Learning Vector Quantization , 2003, Neural Processing Letters.

[42]  Peter Stone,et al.  Function Approximation via Tile Coding: Automating Parameter Choice , 2005, SARA.

[43]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[44]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[45]  Bohdana Ratitch On characteristics of markov decision processes and reinforcement learning in large domains , 2005 .

[46]  H. Robbins A Stochastic Approximation Method , 1951 .

[47]  Dimitris C. Dracopoulos Evolutionary Learning , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[48]  P. Schrimpf,et al.  Dynamic Programming , 2011 .