Decidable characterizations of dynamical properties for additive cellular automata over a finite abelian group with applications to data encryption

Abstract Additive cellular automata over a finite abelian group are a wide class of cellular automata (CA) that are able to exhibit the complex behaviors of general CA and are often exploited for designing applications in different practical contexts. We provide decidable characterizations for Additive CA of the following important properties defining complex behaviors of complex systems: injectivity , surjectivity, equicontinuity, sensitivity to the initial conditions, topological transitivity , and ergodicity . Since such properties describe the main features required by real systems, the decision algorithms from our decidability results are then important tools for designing proper applications based on Additive CA. Indeed, we describe how our results can be exploited in some emblematic applications of cryptosystems , a paradigmatic and nowadays crucial applicative domain in which Additive CA are extensively used. We deal with methods for data encryption and, namely, we propose some strong modifications to the existing schemes in order to increase their security level and make attacks much harder.

[1]  Gonzalo Álvarez,et al.  A multisecret sharing scheme for color images based on cellular automata , 2008, Inf. Sci..

[2]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[3]  Gianpiero Cattaneo,et al.  Grid and HPC Dynamic Load Balancing with Lattice Boltzmann Models , 2006, OTM Conferences.

[4]  Nobuyasu Osato,et al.  Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..

[5]  Enrico Formenti,et al.  Integrality of matrices, finiteness of matrix semigroups, and dynamics of linear cellular automata , 2019, ArXiv.

[6]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[7]  Enrico Formenti,et al.  Chaos and ergodicity are decidable for linear cellular automata over (Z/mZ)n , 2020, Inf. Sci..

[8]  Gianpiero Cattaneo,et al.  A full cellular automaton to simulate predator-prey systems comparison with the discrete time Lotka-Volterra equations , 2006, JAC.

[9]  Enrico Formenti,et al.  Three research directions in non-uniform cellular automata , 2014, Theor. Comput. Sci..

[10]  Pierre Guillon,et al.  Sand automata as cellular automata , 2009, Theor. Comput. Sci..

[11]  Enrico Formenti,et al.  Periodic Orbits and Dynamical Complexity in Cellular Automata , 2013, Fundam. Informaticae.

[12]  Enrico Formenti,et al.  Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues , 2014, Theor. Comput. Sci..

[13]  Enrico Formenti,et al.  On the directional dynamics of additive cellular automata , 2009, Theor. Comput. Sci..

[14]  Ángel Martín del Rey,et al.  A secret sharing scheme based on cellular automata , 2005, Appl. Math. Comput..

[15]  Yuan Zhou,et al.  Encryption Based on Reversible Second-Order Cellular Automata , 2005, ISPA Workshops.

[16]  Enrico Formenti,et al.  Computing Issues of Asynchronous CA , 2012, Fundam. Informaticae.

[17]  Gianpiero Cattaneo,et al.  Chaotic Subshifts and Related Languages Applications to one-dimensional Cellular Automata , 2002, Fundam. Informaticae.

[18]  Giancarlo Mauri,et al.  Computational complexity of finite asynchronous cellular automata , 2017, Theor. Comput. Sci..

[19]  Enrico Formenti,et al.  Local rule distributions, language complexity and non-uniform cellular automata , 2013, Theor. Comput. Sci..

[20]  Pierre Guillon,et al.  Stable Dynamics of Sand Automata , 2008, IFIP TCS.

[21]  Giovanni Manzini,et al.  A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..

[22]  Lieven Le Bruyn,et al.  Algebraic properties of linear cellular automata , 1991 .

[23]  S. Li,et al.  Cryptographic requirements for chaotic secure communications , 2003, nlin/0311039.

[24]  Olu Lafe Data compression and encryption using cellular automata transforms , 1997 .

[25]  Enrico Formenti,et al.  Dynamical behavior of additive cellular automata over finite abelian groups , 2020, Theor. Comput. Sci..

[26]  Jarkko Kari Rice's Theorem for the Limit Sets of Cellular Automata , 1994, Theor. Comput. Sci..

[27]  Parimal Pal Chaudhuri,et al.  Theory and Applications of Cellular Automata in Cryptography , 1994, IEEE Trans. Computers.

[28]  Enrico Formenti,et al.  Non-uniform cellular automata: Classes, dynamics, and decidability , 2012, Inf. Comput..

[29]  Alberto Dennunzio From One-dimensional to Two-dimensional Cellular Automata , 2012, Fundam. Informaticae.

[30]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[31]  Enrico Formenti,et al.  On the dynamical behaviour of linear higher-order cellular automata and its decidability , 2019, Inf. Sci..

[32]  Alberto Dennunzio,et al.  A Predator-Prey Cellular Automaton with Parasitic Interactions and Environmental Effects , 2008, Fundam. Informaticae.

[33]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[34]  Luigi Acerbi,et al.  Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..

[35]  Gianpiero Cattaneo,et al.  Solution of some conjectures about topological properties of linear cellular automata , 2004, Theor. Comput. Sci..

[36]  Ángel Martín del Rey,et al.  The Use of Linear Hybrid Cellular Automata as Pseudo Random Bit Generators in Cryptography , 2004, Neural Parallel Sci. Comput..