An exact LMI condition for the strong delay‐independent stability analysis of neutral delay systems

[1]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[2]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[3]  J. Hale,et al.  Stability in Linear Delay Equations. , 1985 .

[4]  Jie Chen,et al.  Frequency sweeping tests for stability independent of delay , 1995, IEEE Trans. Autom. Control..

[5]  Ping He,et al.  Robust exponential synchronization for neutral complex networks with discrete and distributed time‐varying delays: A descriptor model transformation method , 2014 .

[6]  A. Ruehli Equivalent Circuit Models for Three-Dimensional Multiconductor Systems , 1974 .

[7]  Fernando de Oliveira Souza,et al.  A simple necessary and sufficient LMI condition for the strong delay-independent stability of LTI systems with single delay , 2018, Autom..

[8]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[9]  Qing-Long Han,et al.  On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty , 2004, Autom..

[10]  R. Brayton Bifurcation of periodic solutions in a nonlinear difference-differential equations of neutral type , 1966 .

[11]  Maurício C. de Oliveira,et al.  Synthesis of non-rational controllers for linear delay systems , 2004, Autom..

[12]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[13]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[14]  Maurício C. de Oliveira,et al.  Stability independent of delay using rational functions , 2009, Autom..

[15]  Emilia Fridman,et al.  Introduction to Time-Delay Systems , 2014 .

[16]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[17]  Xinghuo Yu,et al.  Finite-time synchronization of neutral complex networks with Markovian switching based on pinning controller , 2015, Neurocomputing.

[18]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[19]  A. Bellen,et al.  Methods for linear systems of circuit delay differential equations of neutral type , 1999 .

[20]  Pedro Luis Dias Peres,et al.  Robust H∞ filter design for uncertain linear systems with multiple time-varying state delays , 2001, IEEE Trans. Signal Process..

[21]  Ping Wei,et al.  Easily testable necessary and sufficient algebraic criteria for delay-independent stability of a class of neutral differential systems , 2008, Syst. Control. Lett..

[22]  Pierre-Alexandre Bliman,et al.  Lyapunov equation for the stability of linear delay systems of retarded and neutral type , 2002, IEEE Trans. Autom. Control..

[23]  Huijun Gao,et al.  Delay-independent stability analysis of linear time-delay systems based on frequency discretization , 2016, Autom..

[24]  Jean-Michel Dion,et al.  On delay-dependent stability for linear neutral systems , 2003, Autom..

[25]  Vladimir L. Kharitonov,et al.  Robust stability analysis of time delay systems: A survey , 1999 .

[26]  Giulio Antonini,et al.  Input-to-State Stability Analysis of Partial-Element Equivalent-Circuit Models , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Min Wu,et al.  Augmented Lyapunov functional and delay‐dependent stability criteria for neutral systems , 2005 .

[28]  Karina A. Barbosa,et al.  New improved delay-dependent H ∞ filter design for uncertain neutral systems , 2008 .

[29]  Dong Yue,et al.  A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model , 2004, Proceedings of the 2004 American Control Conference.

[30]  Vladimir L. Kharitonov,et al.  Time-Delay Systems , 2013 .