Epicuticular wax analysis of wild and agronomically important Agave species

[1]  M. Kļaviņš,et al.  Compositional and morphological analyses of wax in northern wild berry species. , 2019, Food chemistry.

[2]  A. Destrac-Irvine,et al.  Triterpenoid profiles of the leaves of wild and domesticated grapevines , 2019, Phytochemistry Letters.

[3]  C. Pączkowski,et al.  Comparison of steroids and triterpenoids in leaf cuticular waxes of selected Polish and Russian cultivars and genotypes of edible honeysuckle , 2019, Phytochemistry Letters.

[4]  B. Adomako,et al.  Mode of Inheritance and Combining ability studies on Epicuticular wax Production in Resistance to Black pod disease in Cacao (Theobroma cacao L.) , 2019, Scientia Horticulturae.

[5]  Jiao Liu,et al.  Characterization of increased cuticular wax mutant and analysis of genes involved in wax biosynthesis in Dianthus spiculifolius , 2018, Horticulture Research.

[6]  M. Freeling,et al.  Gene retention, fractionation and subgenome differences in polyploid plants , 2018, Nature Plants.

[7]  S. Kothari,et al.  Properties, variations, roles, and potential applications of epicuticular wax: a review , 2018 .

[8]  D. Hays,et al.  The Role of Leaf Epicuticular Wax in the Adaptation of Wheat (Triticum aestivum L.) to High Temperatures and Moisture Deficit Conditions , 2018 .

[9]  H. Abdel-Haleem,et al.  Characterization of leaf cuticular wax classes and constituents in a spring Camelina sativa diversity panel , 2018 .

[10]  Y. V. Rao,et al.  Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum (Sorghum bicolor L. Moench) , 2017, Theoretical and Applied Genetics.

[11]  D. Xue,et al.  Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance , 2017, Front. Plant Sci..

[12]  Jun Guo,et al.  Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines , 2016, Front. Plant Sci..

[13]  R. Jetter,et al.  Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides. , 2016, Phytochemistry.

[14]  G. Stojanović,et al.  Distribution and Variability of n‐Alkanes in Epicuticular Waxes of Sedum Species from the Central Balkan Peninsula: Chemotaxonomic Importance , 2015, Chemistry & biodiversity.

[15]  F. Yang,et al.  Expression of a hevein-like gene in transgenic Agave hybrid No. 11648 enhances tolerance against zebra stripe disease , 2014, Plant Cell, Tissue and Organ Culture (PCTOC).

[16]  G. Ash,et al.  Responses of physiological indexes and leaf epicuticular waxes of Brassica napus to Sclerotinia sclerotiorum infection , 2014 .

[17]  J. Rose,et al.  The Formation and Function of Plant Cuticles1 , 2013, Plant Physiology.

[18]  M. Tiznado-Hernández,et al.  Composición, fisiología y biosíntesis de la cutícula en plantas , 2013 .

[19]  J. Joubès,et al.  Arabidopsis cuticular waxes: advances in synthesis, export and regulation. , 2013, Progress in lipid research.

[20]  M. Ercolano,et al.  Molecular Tools for Exploring Polyploid Genomes in Plants , 2012, International journal of molecular sciences.

[21]  S. Murray,et al.  Genetic Variation for Maize Epicuticular Wax Response to Drought Stress at Flowering: Maize Epicuticular Wax Response to Drought , 2012 .

[22]  Zhenzhen Dai,et al.  AFLP analysis and zebra disease resistance identification of 40 sisal genotypes in China , 2012, Molecular Biology Reports.

[23]  A. Akrofi,et al.  Host Plant Resistance to Phytophthora Pod Rot in Cacao (Theobroma cacao L.): The Role of Epicuticular Wax on Pod and Leaf Surfaces , 2012 .

[24]  OurariMalika,et al.  Diversity and evolution of the Hordeum murinum polyploid complex in Algeria , 2011 .

[25]  E. Ashworth,et al.  Plant Epicuticular Waxes: Function, Production, and Genetics , 2010 .

[26]  Z. Chen,et al.  Molecular mechanisms of polyploidy and hybrid vigor. , 2010, Trends in plant science.

[27]  A. González,et al.  Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley , 2010, Euphytica.

[28]  D. Soltis,et al.  Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae) , 2010, BMC Genomics.

[29]  D. Kosma,et al.  The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis1[W][OA] , 2009, Plant Physiology.

[30]  A. Leitch,et al.  Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy , 2008 .

[31]  R. Jetter,et al.  Sealing plant surfaces: cuticular wax formation by epidermal cells. , 2008, Annual review of plant biology.

[32]  M. O. Soladoye,et al.  A chemotaxonomic approach to the alkane content of three species of Anthocleista Afzel. (Loganiaceae) , 2007 .

[33]  D. Kosma,et al.  Eco-Physiological and Molecular-Genetic Determinants of Plant Cuticle Function in Drought and Salt Stress Tolerance , 2007 .

[34]  A. García-Mendoza,et al.  UNA NUEVA ESPECIE DE AGAVE, SUBGENERO LITTAEA (AGAVACEAE) DE TAMAULIPAS, MÉXICO , 2007 .

[35]  P. Hasegawa,et al.  Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops , 2007 .

[36]  T. Shepherd,et al.  The effects of stress on plant cuticular waxes. , 2006, The New phytologist.

[37]  J. Simpson,et al.  AFLP analysis of Agave tequilana varieties , 2006 .

[38]  Luca Comai,et al.  The advantages and disadvantages of being polyploid , 2005, Nature Reviews Genetics.

[39]  M. Sonibare,et al.  Chemotaxonomic significance of leaf alkanes in species of Ficus (Moraceae) , 2005 .

[40]  O. Martínez de la Vega,et al.  Analysis of genetic diversity in Agave tequilana var. Azul using RAPD markers , 2001, Euphytica.

[41]  Vincent Colot,et al.  Understanding mechanisms of novel gene expression in polyploids. , 2003, Trends in genetics : TIG.

[42]  J. Doležel,et al.  Nuclear genome size analysis of Agave tequilana Weber , 2003 .

[43]  F. E. Erosa,et al.  Major components from the epicuticular wax of "Cocos nucifera" , 2002 .

[44]  D. Piñero,et al.  Isozymatic variation and phylogenetic relationships between henequen (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). , 1999, American journal of botany.

[45]  P. Colunga-Garcíamarín,et al.  Morphological variation of henequen (Agave fourcroydes, Agavaceae) germplasm and its wild ancestor (A. angustifolia) under uniform growth conditions: diversity and domestication. , 1997, American journal of botany.

[46]  M. Maffei Chemotaxonomic significance of leaf wax alkanes in the gramineae , 1996 .

[47]  A. Quiroz,et al.  New cytotaxonomical determinants recognized in six taxa of Agave in the sections Rigidae and Sisalanae , 1991 .

[48]  H. Mayeux,et al.  Composition of Epicuticular Wax on Opuntia engelmannii , 1990, Botanical Gazette.

[49]  Park S. Nobel,et al.  Environmental Biology of Agaves and Cacti , 1988 .

[50]  M. Baker,et al.  Chromosome and Hybridization Studies of Agave , 1985 .

[51]  H. S. Gentry,et al.  The stomatal complex in Agave: groups Deserticolae, Campaniflorae, Umbelliflorae , 1978 .

[52]  T. Neales The Effect of Night Temperature on Co2 Assimilation, Transpiration, and Water Use Efficiency in Agave Americana L , 1973 .

[53]  P. Robins,et al.  Studies on plant cuticular waxes—II: Alkanes from members of the genusAgave (Agavaceae), the generaKalanchoe,Echeveria,Crassula andSedum (Crassulaceae) and the genusEucalyptus (Myrtaceae) with an examination of Hutchinson's sub-division of the Angiosperms into Herbaceae and Lignosae , 1968 .

[54]  J. Wienk Phytophthora Nicotianae: A Cause of Zebra Disease in Agave Hybrid No. 11648 and Other Agaves , 1968 .

[55]  G. Lock Sisal : twenty-five years' sisal research , 1962 .

[56]  E. Kurtz A survey of some plant waxes of southern arizona , 1958 .

[57]  J. Mcclendon On Xerophytic Adaptations of Leaf Structure in Yuccas, Agaves and Nolinas , 1908, The American Naturalist.